
D
RA
FT

7 2019 Exams

In 2019, a joint Pandas/SQL five week course was taught which had four exams. These are all four exams.
Note that each exam contained both Pandas and SQL questions.

Exam #1

The following table contains information about athletes at a college. You can assume each name uniquely
defines a person and that a person only plays a single sport. There are no two rows with the same
name.

• name: The name of the applicant (string)

• wgt: The athlete’s weight (in kg) (float)

• hgt: The athlete’s height (in meters) (float)

• state: The state that the athlete is from (string)

• mdt: The date that the measurement was taken (date type)

• sport: The sport (all lowercase) that the person plays (string)

• sex: Is the athlete male or female (“M” or “F”) (string)

• injury: Injuries (all lowercase) are listed here (if Null that means no injury). There will be only a
SINGLE injury listed (string)

• The name of the table / DataFrame is ath. No need to use a schema or load the DataFrame.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

Figure D.3: Ath Table: 12,435 Rows

name wgt hgt state mdt sport sex injury

Ringly Roberson 94.25 1.75 NY 8-1-2012 basketball M
Crash Bandicoot 88.25 1.62 MS 1-1-2012 rugby M shoulder
alligator reynolds 66.1 1.88 PA 8-5-2012 softball F

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Using SQL, write a query which returns the names (name only) of the top-6 tallest athletes who play
basketball.

SELECT
name

FROM
ath

where sport = 'basketball'
order by hgt desc limit 6;

414

D
RA
FT

2. Using SQL, write a query which returns all basketball players (name only) shorter than 1.65 m from
either New York (‘NY’) or Alabama (‘AL’). Only include those athletes who are not injured.

select name from ath where
state in ('NY', 'AL')
and hgt < 1.65
and sport = 'basketball'
and injury is null;

3. Write an SQL query which returns the number of athletes from each state who are injured. This
should be two columns by fifty rows.

SELECT
state, count(1) as ct

from
ath

where injury is not null
group by 1;

4. Write an SQL query which returns all rows and columns for female athletes.

select * from ath where sex = 'F';

5. We say that a sport is injury prone if 10% or more of the sport has injuries. Write an SQL query
which returns a list of sports which are injury prone.

select sport from ath
group by 1
having sum(case when injury is not null then 1 else 0 end) ::float / sum(1) >= .10;

OR:

select sport from
(select sport

, sum(case when injury is not null then 1 else 0 end)::float / sum(1) as rat
from ath
group by 1) as innerQ
where rat >= .1

6. We calculate the BMI (“Body Mass Index”) of a person by taking their weight and dividing it by
the height squared. Write a query which returns all rows and three columns: BMI, name and sport.

select wgt / hgt / hgt as bmi, name, sport
from ath;

7. Return a table with three columns: name, sport, and BMIFlag. BMIFlag should be equal to “0” if
the BMI is less than or equal to 20, “1” if the BMI is greater than 20 and less than or equal to 30
and “2” otherwise.

415

D
RA
FT

select
name, sport, wgt / hgt / hgt as BMI
, case

when wgt / hgt / hgt <= 20 then 0
when wgt / hgt / hgt <= 30 then 1
else 2 end as bmiflag

from
ath;

8. If a person’s BMI is greater than or equal to 30 they are defined as obese. Write a query which
returns the percentage of athletes of each sport who are obese.

select
sport,
sum(case when wgt / hgt / hgt > 30 then 1 else 0 end)::float / count(1) as pctObese

from
ath

group by 1;

9. Write a query which returns the sport, average height and average weight (by sport) for everyone
whose name begins with the letter “A”. Do not assume that the first letter of the person’s name is
always uppercase (there could be an “ann mitchell” in the table).

select
sport
, avg(hgt) as agh
, avg(wgt) as agw

from ath
where upper(left(name,1)) = 'A'
group by 1;

10. Volleyball and basketball are known to be hard on the knees. Write a query which returns the percent
of athletes who have “knee” injuries who play “volleyball” or “basketball” (combined) vs. the percent
of knee injuries for sports which are NOT “volleyball” or “basketball”. In other words, this should
return two rows (one for volleyball / basketball and one for other) and two columns (one with a label
for the sports included and one for the percent).

select
case

when sport = 'basketball' or sport = 'volleyball' then 'VB'
else 'not VB'

end as sportsType
, sum(case when injury = 'knee' then 1 else 0 end)::float / sum(1) as pctKnee
from ath
group by 1;

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named ath is already loaded. Unless otherwise specified you may return either a Pandas
Series or DataFrame.

416

D
RA
FT

1. Using Pandas, return an object (Series, DataFrame or array) of the names, and names only, of the
top-6 tallest athletes who play basketball.

ath.loc[(ath.sport == 'basketball')].nlargest(6, hgt)['name']

2. Using Pandas, return all basketball players (name only) shorter than 1.65 m from either New York
(‘NY’) or Alabama (‘AL’). Only include those athletes who are not injured.

ath.loc[
(ath.sport=='basketball') & (ath.hgt < 1.65) & ((ath.state == 'AL') | (ath.state == 'NY'))
& (ath.injury.isna() == True), 'name']

3. Using Pandas, return an object which contains the names of sports (this should be without duplicates)
which have a player with an injury to their “shoulder”. You may assume that all the injuries in the
table are lowercase.

ath.loc[(ath.injury=='shoulder')].sports.unique()

4. Female soccer players who have had a knee injury are going to be put on a special training program.
Please return an object which contains their names and only their names sorted by state (A to Z).

ath.loc[(ath.sport == 'soccer') & (ath.injury == 'knee') & (ath.sex == 'F')]
.sort_values('state')['name']

5. We calculate the BMI (“Body Mass Index”) of a person by taking their weight and dividing it by
the height squared. In Pandas, return a DataFrame with three columns: BMI, name and sport for
all rows.

ath = ath.assign(bmi = ath.wgt / ath.hgt / ath.hgt).loc[:, ['name', 'sport', 'bmi']]

6. Return a DataFrame with three columns: name, sport and BMIFlag. BMIFlag should be equal to
“0” if the BMI is less than or equal to 20, “1” if the BMI is greater than 20 and less than or equal
to 30 and “2” otherwise.

ath = ath.assign(bmi=ath.wgt / ath.hgt / ath.hgt).loc[:, ['name', 'sport', 'bmi']]
ath.loc[(ath.bmi >= 30), 'bmiflag'] = 2
ath.loc[(ath.bmi >= 20) & (ath.bmi < 30), 'bmiflag'] = 1
ath.loc[(ath.bmi < 20), 'bmiflag'] = 0

7. There was an error with the weight machine and all weight-ins done in the month of March of 2012
were 10% too high. Please return an updated DataFrame with the information corrected. Note
that this should include all rows and columns from the original dataset with wgt set 10% lower for
miss-measured observations.

ath.loc[(ath.mdt.dt.year == 2012) & (ath.mdt.dt.month == 3), 'wgt']
= .9* ath.loc[(ath.mdt.dt.year == 2012) & (ath.mdt.dt.month == 3), 'wgt']

8. Return a DataFrame which contains all information on anyone from Rhode Island (“RI”) or who has
a “knee” injury. Return this data sorted first by sport (A to Z), then by state (A to Z) and then by
name (Z to A). Finally, upper case all returned names.

417

D
RA
FT

ath = ath.loc[(ath.state == "RI") | (ath.injury == "knee")]
.assign(name=ath.name.str.upper())
.sort_values(['sport', 'state', 'name'], ascending=[True, True, False])

9. Return a DataFrame which contains name, state and a flag which is equal to 1 if they play soccer
and weight less than 70 kg or play basketball and weight less than 80 kg. The flag should be zero
otherwise.

ath = ath.assign(flag = 0)
ath.loc[((ath.sport == "soccer") & (ath.wgt < 70))

| ((ath.sport == "basketball") & (ath.wgt < 80)), 'flag'] =1
ath[['name', 'state', 'flag']]

Exam #2

The following table contains information about customer service interactions at a company. In particular,
this has information about customers coming in and asking questions about their computer laptops.

• serviceid: This is an incrementing integer (int)

• custid: This is the ID for the customer (int)

• pid: This is the ID of the reported problem (e.g. battery problems are when pid = 2) (int)

• servicedt: This is the date that the service took place (date)

• location: This is the city and state of the service center (string)

• result: This is the diagnosis code for the device (e.g. result = 1 means solved) (int)

• followup: This contains information about if there was a follow up to the customer service (string)

• The name of the table / DataFrame is cust. No need to use a schema or load the DataFrame.

• The only column with Null values is “followup”.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

Figure D.4: cust Table: 12,435 Rows

serviceid custid pid servicedt location result followup

1 21 12 1-1-2012 Livermore, CA 1
2 21 23 1-5-2014 Livermore, CA 1
3 26 11 1-15-2018 Livermore, CA 110 Refund
4 53 18 3-3-2011 Yuma, AZ 1

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns all rows and columns for services which occur in March or December of
any year.

418

D
RA
FT

select

*
from

cust
where date_part('month', servicedt) = 3

or date_part('month', servicedt) = 12;

2. All customers with problem 22 (pid = 22) in California (location ends with ‘CA’) had the wrong
result. Please write a query which returns a list of customers (no duplicates, just their IDs) who need
to be notified.

select distinct custid
from cust
where right(location,2) = 'CA'
and pid = 22;

3. Write a query which returns a time series of the number of services which have no followup. This
should be aggregated to the month/year level, so that all no-followup service of the same month/year
are combined. Make sure to return the data sorted from earliest to latest date. In other words, there
should be two columns: one indicating the year / month (as a date) and one with the number of
services without a followup.

select
date_trunc('month', servicedt) as monyear
, sum(1) as ct

from
cust

where followup is null
group by 1
order by 1 asc;

4. We say that a service request is solved if there is no followup and the result is equal to 1. For each
problem type (pid), report the total number of solved service requests.

select
pid
, count(1) as solved

from
cust

where followup is null and result = 1
group by 1;

5. We say that a service request is solved if there is no followup and the result is equal to 1. Generate a
dataset which has one row per location and three columns. The first column is location, the second
is the total number of solved interactions at that location (over all time) and the third is the total
number of all customer service interactions in August of 2014 at that location.

419

D
RA
FT

select
location
, sum(case when result = 1 and followup is null then 1 else 0 end) as tst2
, sum(case when date_trunc('month', servicedt)::date = '08-01-2014'

then 1 else 0 end) as tstaug
from

cust
group by 1;

6. Write a query which returns the locations which have more than 10 different types of problems (unique
pid). For those locations, return two columns: one with the original location and one with just the
state abbreviation. You can assume that all locations are of the form “cityname, state abbreviation”
and that all state abbreviations are TWO characters long.

select
location, right(location, 2) as state

from
cust

group by 1
having count(distinct pid) > 10

NOTE THE ABOVE CAN BE GROUP BY 1 OR GROUP BY 1,2

7. We are trying to figure out how effective each service center is at solving different problems. Create
a dataset with 3 columns: the first should be location, the second should be problem (pid) and the
third should be the percent of problems of that type and at that location which are “solved” (result
= 1 and no followup). Make sure to exclude any problem/location group with less than or equal to
10 rows.

select
pid
, location
, sum(case when result = 1 and followup is null

then 1 else 0 end)::float / sum(1) as pct
from

cust
group by 1,2
having count(1) > 10;

8. Write a query which returns the frequency distribution of different problem types. This should return
two columns. The first, called num, should be the number of times a problem appears in the dataset
and the second, called “val” should be number of times this frequency occurs. For example, let’s say
that problems (pid) 27, 35 and 115 each appear 8 times in the table (and no other problem appears
exactly 8 times in the table), then there should be a row which is (8,3). Note that each problem
(pid) should only be tallied once.

select ct as num, count(1) as val
from

(select count(1) as ct
from cust group by pid) as innerq

group by 1;

420

D
RA
FT

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named cust is already loaded. Unless otherwise specified you may return either a Pandas
Series or DataFrame.

1. Generate a DataFrame which contains all columns and only those rows which have problem #3 (pid
= 3) and are solved (result = 1 and there is no followup).

cust.loc[(cust.result == 1) & (cust.pid == 3) & (cust.followup.isna())]

2. Generate a dataset which contains (a) location (b) the earliest date that a service occurred for that
location, (c) the latest date that a service occurred at that location, (d) the number of unique
problem’s (pid) that the location experienced and (d) the total number of services that occurred at
that location. Don’t worry about column names, but make sure that location is a column.

(cust
.groupby(['location'])
.agg({'servicedt' : ['max', 'min'], 'pid' : ['nunique', 'sum']})
.reset_index()

)

3. Generate a DataFrame with three columns: location, day of the week (“dow”, as an integer) and
the number of rows with any, non-null followup that were at that location on that day-of-the-week.
Note that it doesn’t matter if this returns columns or indexes for any value.

cust['dow'] = cust.servicedt.dt.dayofweek
cust['flag'] = 0
cust.loc[˜(cust.followup.isna), 'flag'] = 1
cust.groupby(['location', 'dow']).agg({ 'flag' : 'sum'})

4. Generate a dataset which has one row per location and three columns. The first column is location,
the second is the total number of solved (result = 1 and followup is empty) interactions at that
location (over all time) and the third is the total number of customer service interactions in August
of 2014 at that location. Make sure that this is three columns.

cust.assign(succ=0, Aug2014=0)
cust.loc[(cust.result == 1) & (cust.followup.isna()), 'succ'] = 1
cust.loc[(cust.servicedt.dt.month == 8) & (cust.servicedt.dt.year == 2014), 'Aug2014'] = 1
cust.groupby('location').agg({'succ' : ['sum'], 'Aug2014' : ['sum']}).reset_index()

5. We are trying to figure out how effective each service center is at each location at solving different
problems. Create a DataFrame with three columns: the first should be location (“location”), the
second should be problem (“pid”) and the third (“succ”) should be equal to 1 or 0, depending on if
the outcome was solved (result = 1 and no followup) or not. This should have the same number of
rows as the original DataFrame. Name this DataFrame “tst”.

cust['succ'] = 0
cust.loc[(cust.result == 1) & (cust.followup.isna()), 'succ'] = 1
tst = cust.loc[:, ['location', 'pid', 'succ']]

6. Assume that you have the “tst” DataFrame from the problem above. We now want to calculate

421

D
RA
FT

the percent of customer interactions which are solved, aggregated to the problem (pid) and location
level. In other words, using the DataFrame from the previous problem, generate a new DataFrame
consisting of three columns: location, pid and the percent of interactions which were solved. Specif-
ically this is the sum of “succ” divided by the number of rows. Make sure to remove any row which
has less than 10 observations in the original DataFrame (as there is not enough data to conclude
anything from them).

tst = tst.groupby(['location', 'pid']).agg({'succ' : ['sum', 'count']})
tst.columns = ['s1', 'c1']
tst = tst.loc[(tst.c1 > 10)]
tst.assign(pct=tst.s1/tst.c1)[['pct']].reset_index()

Exam #3

The following table contains information about doctors and their patients. At most, each patient has one
doctor.

• Columns in the patients table

– patientid: This is an auto-incrementing integer for the patient (int)

– doctorid: This is the ID for the doctor that they see (int)

– hgt: This the height of the patient in meters (float)

– birthdt: This is the date of birth of the patient (date)

– wgt: This is the weight of the patient in kg (float)

– city: This the city that the person lives in (string)

– state: This is the state that the person lives in (string)

– sex: The sex of the patient (M/F) (string)

• Columns in the doctors table

– doctorid: This is an auto-incrementing integer for the doctor (int)

– speciality: This is the type of doctor (string)

– surgeon: Is the doctor a surgeon (Y/N) (string)

– sex: The sex of the doctor (M/F) (string)

• The names of each table are “patients” and “doctors”. No need to refer to any schema or load a
DataFrame.

• There are some patients who have not yet been assigned doctors, so doctorid could be
Null in the patients table.

• There are some doctors who were just hired who have not been assigned patients yet.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

• Any two columns with the same name can be assumed to match.

422

D
RA
FT

Figure D.5: Patients Table: 12,435 Rows

patientid doctorid hgt birthdt wgt city state sex

1 2 1.7 1-1-1997 58.2 Livermore CA M
2 18 1.65 1-5-1975 56.5 Livermore CA F
3 18 1.8 1-15-1994 67.3 Livermore CA M
4 7 1.93 3-3-1964 66.0 Yuma AZ M

Figure D.6: Doctor Table: 277 Rows

doctorid speciality surgeon sex

1 Oncology Y M
2 ENT N F
3 General N M
4 Pediatric Y F

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns two columns. The first should be the doctorid and the second should
be the number of patients that that doctor sees. This should be sorted from most to least patients
seen. Make sure to not include doctors who have no patients and patients who have no doctors.

select
doctorid, count(1) as ct
patients

where doctorid is not null
group by 1
order by 2 desc;

2. A high-usage doctor is one that sees strictly more than 50 patients. Write a query which returns four
columns. The first should be state, the second and third should be the average height and average
weight of patients from that state and the fourth should be the number of patients from that state.
Note that this should only include patients who have a high-usage doctor. There should be one row
returned per state.

423

D
RA
FT

select
state
, avg(wgt) as aw
, avg(hgt) as ah
, count(1) as ct

from
(select doctorid from patients
group by doctorid
having count(1) > 50) as lhs

left join
patients

using(doctorid)
group by 1 ;

OR

select
state
, avg(wgt) as aw
, avg(hgt) as ah
, count(1) as ct

from
patients

where doctorid in
(select doctorid from patients

group by doctorid
having count(1) > 50)

group by 1 ;

3. Write a query which returns three columns. The first should be the speciality, the second should be
the number of surgeons (surgeon = ‘Y’) within that speciality and the third should be the number
of non-surgeons (surgeon = ‘N’) of that speciality.

select
speciality
, sum(case when surgeon = 'Y' then 1 else 0 end) as numsurg
, sum(case when surgeon = 'N' then 1 else 0 end) as numnonsurg

from
doctor

group by 1;

4. We say that a doctor is the same-sex as their patient if they are the same-sex as the patient (e.g. both
Male or both Female). Write a query which returns two columns. The first should be the patientid
and the second should be a flag which is equal to 1 if the patient and doctor are the same sex, zero
otherwise. If a patient does not yet have a doctor the flag should be set to -1. This should have the
same number of rows as the patients table.

424

D
RA
FT

select
patientid
, case

when lhs.sex = rhs.sex then 1
when rhs.sex is null then -1
else 0

end as flag
from

patients as lhs
left join

doctor as rhs
using(doctorid);

5. Create a dataset with five columns: year, speciality, number of patients who were born that year and
have a doctor with that speciality, the average weight of patients who were born that year and have
a doctor of that speciality and the average height of patients who were born that year and have a
doctor of that speciality. Note that year should be returned as a number, not a date. Only include
those patients who have been assigned doctors.

select
date_part('year', birthdt) as yr
, speciality
, count(1) as numpatients
, avg(hgt) as avghgt
, avg(wgt) as avgwgt

from
patients

inner join
doctor

using(doctorid)
group by 1,2;

6. We calculate the Body Mass Index of a person (BMI) as weight divided by height squared. Generate
a table which has two columns: speciality and the max BMI of patients who see doctors of that
speciality. Be careful to exclude doctors without patients and patients without doctors.

select
speciality
, max(wgt / hgt / hgt) as maxbmi

from
patients

inner join
doctor

using(doctorid)
group by 1;

7. Write a query which returns four columns. The first should be speciality, the second should be sex
(of the doctor), the third should be surgeon (the ‘Y’/‘N’ flag) and the fourth should be the number
of doctors of that type (where type is defined as speciality, sex and surgeon combination). If there is
no doctor of that type then the count should be set to zero.

425

D
RA
FT

select lhs1.sex, lhs2.speciality, lhs3.surgeon, count(rhs.doctorid)
from

(select distinct sex from doctor) as lhs1
cross join

(select distinct speciality from doctor) as lhs2
cross join

(select distinct surgeon from doctor) as lhs3
left join

doctor as rhs
on lhs1.sex = rhs.sex

and lhs2.speciality = rhs.speciality
and lhs3.surgeon = rhs.surgeon

group by 1,2,3

Pandas Section

Please answer the following question, making sure to return only the information required. You can
assume that a DataFrames named patients and doctor are already loaded. Unless otherwise specified you
may return either a Pandas Series or DataFrame.

1. Generate a DataFrame with two columns. The first should be the doctorid and the second should be
the number of patients that the doctor sees. This should be sorted from most to least patients seen.
Make sure to not include doctors who have no patients and that it returns two columns.

(pd.merge(doctor, patients, on='doctorid', how='inner')
.groupby('doctorid')
.agg({'patientid' : 'count'})
.sort_values('patientid', ascending=False)
.reset_index())

This can be done without a merge, but you need to filter out the rows which don't match

2. Return a DataFrame which contains patientid, doctorid, birthdate and the speciality of the that
patient’s doctor. Only include those patients from California “CA” who have been assigned doctors.

lhs = patients.loc[(patients.state == 'CA'), ['patientid', 'doctorid', 'birthdate']]
rhs = doctors.loc[:, ['doctorid' , 'mtype']]
mrg = pd.merge(lhs, rhs, on='doctorid', how='inner')

3. A high-usage doctor is one that sees strictly more than 50 patients. Create a DataFrame which
returns four columns. The first should be state, the second and third should be the average height
and average weight of patients from that state and the fourth should be the number of patients from
that state. Note that this should only include patients who have a high-usage doctor. There should
be one row returned per state.

p1 = patients[['doctorid']].groupby('doctorid').agg({'doctorid' : ['count']}).reset_index()
p1.columns = ['doctorid', 'ct']
p1 = p1.loc[(p1.ct > 50)]

mrg = (pd.merge(p1, patients, on = ['doctorid'], how = 'inner')
.groupby('state')
.agg({'wgt' : ['mean'], 'hgt' : ['mean'], 'doctorid' : ['count']})
.reset_index()
)

426

D
RA
FT

OR

lst = patients[['doctorid']].groupby('doctorid').agg({'doctorid' : ['count']}).reset_index()
lst.columns = ['doctorid', 'ct']
lst = lst.loc[(lst.ct > 50), 'doctorid']

p1 = (patients.loc[(patients.doctorid.isin(lst)), :]
.groupby('state')
.agg({'wgt' : ['mean'], 'hgt' : ['mean'], 'doctorid' : ['count']})
.reset_index()
)

4. We calculate the Body Mass Index of a person (BMI) as weight divided by height squared. Generate
a DataFrame which has two columns: speciality and the max BMI of patients who see doctors of
that speciality. Be careful to exclude doctors without patients and patients without doctors. Make
sure to return two columns

patients['bmi'] = patients.wgt / patients.hgt / patients.hgt

mrg = (pd.merge(patients, doctor, on='doctorid', how = 'inner')
.groupby('speciality')
.agg({'bmi' : ['max']})
.reset_index()
)

5. Create a DataFrame with three columns. The first should be state, the second should be number of
patients from that state (total), the third should be the number of patients from that state which do
NOT have doctors.

mrg = pd.merge(patients, doctor, on ='doctorid', how='left').assign(nodoc=0)
mrg.loc[mrg.doctorid.isna(), 'nodoc'] = 1
mrg = mrg.groupby('state').agg({'doctorid' : ['count'], 'nodoc' : ['sum']}).reset_index()

6. How many patients do not have a doctor assigned?

patients.loc[patients.doctorid.isna(), 'patientid'].count()

Exam #4

The following tables contains information about Uber drivers, their rides and reviews.

• Columns in the drivers table:

– did: This is an auto-incrementing integer ID for the driver (int)

– state: This is the state that the driver lives in (string)

– prom: Is the driver on a promotion? (Y/N) (string)

• Columns in the rides table:

– rid: This is an auto-incrementing integer for the ride (int)

– ridets: This is the date and time that the ride occurred (date)

– did: This is ID for the driver (int)

427

D
RA
FT

– air: This is a flag (Y/N) for if the trip went to the airport (string)

– length: This is the ride length in km (float)

• Columns in the reviews table:

– rid: This is the ride which was reviewed (int)

– review: This is the review (star scale: 1 to 5) (int)

• The names of the tables and DataFrames are drivers, rides and reviews.

• Assume that there are no Null values in any of the tables.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

• Do not create any views.

• Any two columns with the same name can be assumed to match.

• Not all rides will have reviews. A ride can have, at most, one review.

• Not all Drivers may have rides. When a driver first signs up they will not have any
rides.

• DO NOT USE CTE (“with”), but you CAN use any analytic / window function.

did state prom

1 CA Y
2 MN N
3 CA N
4 CA Y

rid ridets did air length

1 1-1-2012 10:24 AM 45 N 1.25
2 12-23-2012 12:22 PM 45 N 23.45
3 7-6-2013 4:13 AM 112 Y 11.17
4 5-5-2014 1:23 PM 1125 N .75

rid review

1 5
23 4
35 4
45 1

Figure D.7: driver table (27,777 rows), rides table (454,123 rows) and reviews table (137,145)

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns two columns and a row for each state in the table. The first column
should be the state and the second should be the number of rides completed by drivers from that
state.

select
state
, count(1)

from
drivers

join
rides

using(did)
group by 1;

428

D
RA
FT

2. Write a query which returns two columns and one row per driver. The first column should be the
driver’s ID number (did) and the second should be a Y/N flag if the driver’s first ride was to the
airport or not.

select
distinct did, airflag

from
(select

did
, first_value(air) over(partition by did order by ridets asc) as airflag

from
rides) as innerQ;

Note that you could use an aggregate function in the outer query, but there has to be an
inner query.

3. Write a query which returns the following: state of the driver, total rides completed by drivers from
that state and the average review of drivers from that state. Make sure to sort this from highest
to lowest average review. Exclude any state with strictly less than 1,000 riders served. This should
have one row per state.

select
state
, sum(1) as totalrides
, avg(review) as avgreview

from
drivers

join
rides
using(did)

left join
reviews
using(rid)

group by 1
having count(distinct rid) >= 1000
order by 3 desc;

4. Write a query which returns three columns. The first column should be year (as an integer), the
second column should be total rides from that year and the third should be the running or cumulative
total of all rides, excluding the current year. There should be one row per year.

select
yr
, numrides
, sum(numrides) over(order by yr asc rows between unbounded preceding and 1 preceding) as cumsum

from
(select

date_part('year', ridets) as yr
, sum(1) as numrides

from
rides

group by 1) as iq;

5. Write a query which returns four columns: The first should be the driver id (‘did’), the second should
be the total number of rides, the third should be the number of their rides with a review and the
fourth should be the number of rides with 5-star reviews (review = 5). Only include rides from 2018

429

D
RA
FT

and make sure to sort the drivers from most to least rides with reviews. Exclude drivers without any
rides.

select
did
, count(1) as numrides
, sum(case when review is not null then 1 else 0 end) as num_with_reviews
, sum(case when review = 5 then 1 else 0 end) as five_star_reviews

from
rides

left join
reviews

using(rid)
where date_part('year', ridets) = 2018
group by 1
order by 3 desc;

6. Write a query which returns two rows and two columns. One row contains the phrase “LT10” and
have the average review for rides that were (strictly) less than 10 km and the other row should be
“MT15” and should be the average review for rides which are (strictly) more than 15 km. There
should only be two rows.

select
case

when length < 10 then 'LT10'
when length > 15 then 'MT15'

end as flag
, avg(review)

from
rides

join
reviews

using(rid)
where length < 10 or length > 15
group by 1;

7. Without using an analytic function, return one row and two columns. This should be the transpose
of the data in the previous question. The first column should be the average review for rides of less
than (strictly) 10 km and the second should be the average review for rides of more than (strictly)
15 km. It should only have one row.

430

D
RA
FT

select
avg(case

when length < 10 then review
else null

end) as lt10
, avg(case

when length > 15 then review
else null

end) as mt15
from

rides
join

reviews
using(rid);

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that DataFrames named drivers, rides and reviews are already loaded. Unless otherwise specified you may
return either a Pandas Series or DataFrame.

1. Return a DataFrame which has two columns and a row for each state. The first column should be
the state and the second should be the number of rides completed by drivers from that state.

pd.merge(rides, drivers, on='did', how='left')
.groupby('state')
.agg({'rid' : ['count']})

2. We are interested in studying the effect of driver promotion (prom = ‘Y’) on long rides (strictly
greater than 10 km). Return a dataset which contains two rows (one for prom=‘Y’ and one for prom
= ‘N’) and has three columns. The first should be prom, the second should the number of long rides
to the airport (air=‘Y’) the third should be the number of long rides not to the airport (air=‘N’).

mrg = pd.merge(drivers, rides, on='did', how='left')
mrg = mrg.loc[(mrg.loc[:, 'length'] > 10), :]

mrg.loc[: , 'airflag'] = 0
mrg.loc[(mrg.loc[:, 'air']) =='Y' , 'airflag'] = 1

mrg.loc[: , 'Nairflag'] = 0
mrg.loc[mrg.loc[:, 'air']=='N' , 'Nairflag'] = 1

mrg = (mrg
.groupby('prom')
.agg({ 'airflag' : ['sum'], 'Nairflag' : ['sum']})
.reset_index()
)

3. Return a DataFrame with two rows and two columns. One row contain the phrase “LT10” and then
has the average review for rides that were (strictly) less than 10 km and the other row should be

431

D
RA
FT

“MT15” and should be the average review for rides which are (strictly) more than 15 km. There
should only be two rows.

mrg = pd.merge(rides, reviews, on='rid', how='inner')

mrg = (mrg
.loc[(mrg.loc[:, 'length'] < 10) | (mrg.loc[:, 'length'] > 15), :]
)

mrg.loc[:, 'flag'] = 'LT10'
mrg.loc[(mrg.loc[:, 'length'] >15), 'flag'] = 'MT15'

mrg.groupby('flag').agg({'review' : ['mean']}).reset_index()

4. There is a worry that there is a relationship between ride length and the percentage of rides with
reviews. To analyze this we will create a flag called “lflag”, which is equal to 1 if the ride length < 2
km, 2 if the length is >= 2 and < 5 km and 3 if the length >= 5 km. Create a dataset which has the
following columns: lflag, state, number of rides which are of that flag-state combination, the number
of those rides with reviews and the average review from rides of that lflag-state combination.

mrg = pd.merge(drivers, rides, on ='did', how='inner')
mrg = pd.merge(mrg, reviews, on = 'rid', how='left')

mrg.loc[:, 'lflag'] = 1
mrg.loc[(mrg.loc[:, 'length']) >=2) & (mrg.loc[:, 'length'] <5) , 'lflag'] = 2
mrg.loc[(mrg.loc[:, 'length'] >5) , 'lflag'] = 3

mrg.groupby(['state', 'lflag'])
.agg({ 'review' : ['mean', 'count'], 'rid' : ['count'] })
.reset_index()

5. What is the average review for all rides from drivers which have ever had a ride over 60km? This
should return a single number.

lst = rides.loc[(rides.loc[:, 'length'] > 60), 'did'].drop_duplicates()

rds = rides.loc[rides.loc[:, 'did'].isin(lst), :]

pd.merge(rds, reviews, on='rid', how='inner')['review'].mean()

432

