
D
RA
FT

Appendix A

Data Dictionaries

317



D
RA
FT

1 Introduction

This chapter contains information on the data used in this course and how to load it into PostgreSQL
and Pandas. To begin loading the data, clone the git repo that can be found at https://github.com/
NickRoss/sql-data.

The repo itself contains a script (load_data.py) which will load the data into a PostgreSQL compatible
database as well as a Docker image for running PostgreSQL via containers. If one wishes to load the data
themselves, this appendix contains a basic framework for loading each table.

This section also contains information on how to load some of the datasets into Pandas. In both cases
(Pandas and SQL), the <FILEPATH> parameter needs to be changed to the location of the file on your
local machine.

2 Iowa Fleet data

This table contains automobile registration information and annual fees for the state of Iowa. Note that a
few changes were made to the file. In particular, O’brien county was miscoded at times and NULL counties
were removed. The final table contains 41,202 rows of data.

CREATE TABLE and COPY commands which load the data into a PostgreSQL compatible database can
be found below:

create table cls.cars (
year int
, countyname varchar(20)
, motorvehicle varchar(3)
, vehiclecat varchar(15)
, vehicletype varchar(55)
, tonnage varchar(30)
, registrations int
, annualfee float
, completecategory varchar(90)

);

COPY cls.cars FROM '<FILEPATH>/iowa_cars.tdf'
CSV DELIMITER AS E'\t'

To load the data into Pandas, the following command can be used:

dfCars = pd.read_csv('<FILEPATH>/iowa_cars.tdf',
sep='\t', engine='python', names=['year', 'countyname',
'motorvehicle' ,'vehiclecat', 'vehicletype',
'tonnage', 'registrations', 'annualfee',
'completecategory'])

318

https://github.com/NickRoss/sql-data
https://github.com/NickRoss/sql-data


D
RA
FT

Table A.1: Data Dictionary for Iowa Cars Data

Column Example Values Data Type Description

Year 2011 Int Calendar year vehicle was reg-
istered

CountyName “Adair” Varchar(20) County vehicle was registered.
Those without a county listed
were registered/titled by the
State

MotorVehicle “Yes” VarChar(3) Indicates whether motor vehi-
cle (Yes) or trailer (No).

VehicleCat “Trailer” VarChar(15) Broad category for vehicle
types.

Vehicletype “Bus” VarcChar(25) Type of vehicle registered.
tonnage “4 tons” charchar(30) Tonnage category for truck

and truck tractor vehicle
types.

registrations 397 int Number of vehicle registra-
tions.

annualfee 1470 float Annual fee associated with ve-
hicle registrations.

completecategory “Truck – 3 Tons” varchar(90) Combination of VehicleType
and tonnage.

3 NY MTA Data

The data in this table represents hourly traffic on NY’s MTA system.1 Information in Table A.1 contains
the map between toll plaza ID and the name of the toll plaza. The final table contains 1,165,728 rows of
data.

In order to load the data use the following set of commands:

create table cls.mta (
plaza int
, mtadt date
, hr int
, direction varchar(1)
, vehiclesEZ int
, vehiclesCASH int

);

COPY cls.mta from '<FILEPATH>/MTA_Hourly.tdf'
CSV DELIMITER AS E'\t'

Loading the data into Pandas can be accomplished with the following command:

1Information was downloaded from this location: https://catalog.data.gov/dataset/
hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-

319

https://catalog.data.gov/dataset/hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-
https://catalog.data.gov/dataset/hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-


D
RA
FT

dfMTA = pd.read_csv('<FILEPATH>/MTA_Hourly.tdf',
sep='\t', engine='python', names=['plaza', 'mtadt',
'hr', 'direction', 'vehiclesez', 'vehiclescash'])

dfMTA.mtadt = pd.to_datetime(dfMTA.mtadt)

Column Example Values Data Type Description

plaza 1,2,3 Int Plaza Number (more informa-
tion below)

mtadt 1/1/2012 Date Observation Date
hr 0 - 23 Int Hour of observation
direction I, O varchar(1) Direction of traffic (Inbound

vs. Outbound)
vehiclesez 1254 int The number of vehicles that

pass through each bridge and
pay with EZ pass

vehiclescash 1254 int The number of vehicles that
pass through each bridge and
pay with cash

Figure A.1: Information on Plaza number for MTA Hourly data

Plaza ID Name

1 Robert F. Kennedy Bridge Bronx Plaza (TBX)
2 Robert F. Kennedy Bridge Manhattan Plaza (TBM)
3 Bronx-Whitestone Bridge (BWB)
4 Henry Hudson Bridge (HHB)
5 Marine Parkway-Gil Hodges Memorial Bridge (MPB)
6 Cross Bay Veterans Memorial Bridge (CBB)
7 Queens Midtown Tunnel (QMT)
8 Hugh L. Carey Tunnel (HLC) formally known as Brooklyn-Battery Tunnel (BBT)
9 Throgs Neck Bridge (TNB)
11 Verrazano-Narrows Bridge (VNB)

320



D
RA
FT

4 Daily Stock Data: s2010 and s2011

The tables s2010 and s2011 contain information on daily prices for stocks that appear on the NYSE or
NASDAQ. The table s2010 has 816,066 rows while the table s2011 has 864,110 rows.

The columns symb and retdate define a unique row for each table.

The commands below will generate two tables, s2010 and s2011 in the schema “stocks” and then load the
data into those two tables. Note that “<FILEPATH>” has to be changed to the path of where the data
lies in on the machine which is loading the data.

create table stocks.s2010 (
symb varchar(6)
, retdate date
, opn float
, high float
, low float
, cls float
, vol int
, exch varchar(8));

COPY stocks.s2010 FROM
'<FILEPATH>/s2010.tdf'
CSV DELIMITER E'\t';

reate table stocks.s2011 (
symb varchar(6)
, retdate date
, opn float
, high float
, low float
, cls float
, vol int
, exch varchar(8));

COPY stocks.s2011 FROM '<FILEPATH>/s2011.tdf'
CSV DELIMITER E'\t';

To load the data into Pandas DataFrames, use the following command:

df2010 = pd.read_csv('<FILEPATH>/s2010.tdf',
sep='\t', engine='python',
names=['symb', 'retdate', 'opn',
'high', 'low', 'cls', 'vol', 'exch'])

df2011 = pd.read_csv('<FILEPATH>/s2011.tdf',
sep='\t', engine='python',
names=['symb', 'retdate', 'opn',
'high', 'low', 'cls', 'vol', 'exch'])

321



D
RA
FT

If you wish to have the dates be converted to dates you can use the following commands to update the
DataFrame.

df2010[:, 'retdate'] = pd.to_datetime(df2010.retdate)
df2011[:, 'retdate'] = pd.to_datetime(df2011.retdate)

Alternatively, you can load retdate as a date using the following:

df2010D = pd.read_csv('../sql-data/raw_data/s2010.tdf'
,sep='\t', engine='python', names=['symb'
, 'retdate','opn', 'high', 'low', 'cls',
'vol', 'exch'], parse_dates = ['retdate'])

df2011D = pd.read_csv('../sql-data/raw_data/s2011.tdf'
,sep='\t', engine='python', names=['symb'
, 'retdate','opn', 'high', 'low', 'cls',
'vol', 'exch'], parse_dates = ['retdate'])

Column Type Description

symb Varchar Code for the stock being
traded.

retdate Date Date for the stock being
traded.

opn float The open price of the stock.

high float The high price of the stock
that day.

low float the low price of the stock that
day.

cls float the closing price of the stock
that day.

vol int the number of share traded
that day.

exch varchar what exchange the stock is
traded on.

5 Annual Fundamental Financial information: fnd

The tables fnd contains information taken from annual reports for stocks. The key to these tables are the
columns datadate and gvkey. The table has 33,817 rows of data and spans most of 2010 and 2011.

The commands below will load the fnd data in the schema “stocks”. Note that “<FILEPATH>” has to
be changed to the path of where the data lies in on the machine which is loading the data.

322



D
RA
FT

create table stocks.fnd (
gvkey varchar(8)
, datadate date
, fyear int
, indfmr varchar(4)
, consol varchar(1)
, popsrc varchar(1)
, datafmt varchar(3)
, tic varchar(8)
, cusip varchar(11)
, conm varchar(30)
, fyr int
, cash float
, dp float
, ebitda float
, emp float
, invt float
, netinc float
, ppent float
, rev float
, ui float
, cik varchar(10)

);

COPY stocks.fnd FROM '<FILPATH>/fnd.tdf
CSV DELIMITER E'\t';

To load the data into Pandas, use the following command:

dffnd = pd.read_csv('<FILEPATH>/fnd.tdf'
,sep='\t', engine='python', names=['gvkey', 'datadate',

'fyear', 'indfmr', 'consol', 'popsrc', 'datafmt', 'tic'
, 'cusip', 'conm', 'fyr', 'cash', 'dp', 'ebitda', 'emp'
, 'invt' , 'netinc', 'ppent', 'rev', 'ui', 'cik'])

323



D
RA
FT

Column Min. Val/Len Max. Val/Len Description

cash -0.01 168896.51 The amount of cash on the
balance sheet. Measured in
millions of dollars.

cik 10 10 SEC identifier for corpora-
tions.

conm 3 30 Company Name

consol 1 1 If the information is consol-
idated with subsidiaries or
kept separate.

cusip 9 9 Another identifier, this one
maintained by the CUSIP bu-
reau.

datafmt 3 3 Represents how the data was
collected.

dp -0.24 23713.56 GAAP depreciation and
Amortization from the in-
come statement. Measured in
Millions of dollars.

ebitda -45026.00 124840.00 Earnings Before Interest
Taxes and Depreciation,
measured in millions of
dollars

emp 0.00 2100.00 Number of employees, mea-
sured in thousands.

fyear 2008 2011 Fiscal year. Note that a
fiscal year is defined as the
year with the most months of
the calendar year with June
falling forward.

fyr 1 12 Month in which the fiscal year
ends.

324



D
RA
FT

Column Min. Val/Len Max. Val/Len Description

gvkey 6 6 Unique Company Identifier
used in the Fundamental Data

indfmr 4 4 Represents how the infor-
mation is presented in the
database.

invt 0.00 373176.43 Inventory from the balance
sheet. Measured in Millions of
Dollars.

netinc -71969.00 104821.00 Net Income, in millions of dol-
lars from the Income State-
ment.

popsrc 1 1 Source of the data. D means
Domestic.

ppent 0.00 218567.00 Total Property Plants and
Equipment from the Balance
Sheet, measured in Millions of
Dollars.

retdate 8 8 Data Date: Date which the
information becomes available
to the public. Represents the
date of the fiscal year-end.

rev -6749.63 470171.00 Total Sales from the Income
Statement, measured in Mil-
lions of Dollars

tic 1 8 Ticker Symbol. Note that this
is modified under certain cir-
cumstances.

ui 0.00 0.00 Unearned Income, measured
in millions of dollars.

6 Soap Transaction Data

This table consists of information relating to a subscription soap service. There are two ways that customers
can order: either via subscription or by a one-off (“unit”) purchase. There are two different order types:
single bars or double bars, though an order can have multiple of a single type in it. For example, if a row
is double bars and there are “2” in the units column, this means that there were four total bars in the
order associated with that row. The table has 1,047,381 rows of data.

The following commands define a table for the soap data as well as populate that table.

325



D
RA
FT

create table cls.trans (
orderid int
, userid int
, trans varchar(15)
, type varchar(15)
, local varchar(10)
, trans_dt date
, units int
, coupon float
, months int
, amt float );

COPY cls.trans from '<FILEPATH>/soapData.tdf'
CSV DELIMITER E'\t';

Column Example Values Data Type Description

orderid 1,2,3 Int Unique ID for the order
userid 1,2,3 int Unique ID for the user
trans Double Bar varchar Bar type in order
type Unit, Sub varchar Is this part of a subscription

or one off transaction?
local Mexico varchar Location of the customer
trans dt date 12/22/2016 Date of the transaction
units 1,2,3 int Number of that trans in the

order
coupon .25 float the percent coupon applied
months 1,2,3 int If a subscription, the timing of

the subscription
amt 47.96 float The total price of the transac-

tion

To load the data into Pandas, use the following command:

dfTrans = pd.read_csv('<FILEPATH>/soapData.tdf'
, sep='\t', engine='python', names = ['orderid',
'userid', 'trans', 'type', 'local', 'trans_dt',
'units', 'coupon', 'months', 'amt'],
parse_dates=['trans_dt'])

326


