
D
RA
FT

Chapter 10

Analytic Functions & CTE’s

165

D
RA
FT

Contents

1 Analytic Functions . 167

2 Using Analytic Functions with Transaction Data . 174

3 Common Table Expressions (“CTE”) . 176

4 CTEs with the transaction data . 178

166

D
RA
FT

1 Analytic Functions

• Analytic (sometimes called “window” or “partition” functions) functions were designed to simplify
many common complex joins.

• There are a few different use cases that they can greatly simplify.

• As an example, lets consider the case of computing the percentage of traffic which pays by cash by
hour and plaza in the inbound direction on November 10th, 2016. To do this we would need to take
our original data and then join it against the correct sum. In other words we want to return 24
columns for each plaza and the sum (vertically, across hour) should be equal to 1.

• In order to do this calculation we need to join our original data back onto the proper sum, as can be
seen in the query below.

select
plaza
, hr
, vehiclescash::float / ALLVech as pctperhr
, vehiclescash
, ALLVech

from
(select plaza, hr, vehiclescash

from cls.mta
where mtadt = '2016-11-10'
and direction = 'I') as lhs

left join
(select plaza, sum(vehiclescash) as ALLVech

from cls.mta
where mtadt = '2016-11-10'
and direction = 'I'
group by 1) as rhs

using(plaza)
order by 1,2;

plaza hr pctperhr vehiclescash allvech
------- ---- ---------- -------------- ---------

1 0 0.0230918 167 7232
1 1 0.017146 124 7232
1 2 0.00954093 69 7232
1 3 0.00940265 68 7232
1 4 0.0199115 144 7232

[...]

but this construct is a bit cumbersome.

• For another example, consider wanting to create a rolling sum over each plaza day for the number of
cars which use cash in the inbound direction.

167

D
RA
FT

select
lhs.plaza, lhs.mtadt, lhs.hr, sum(rhs.vehiclescash) as cum_sum

from
(select plaza, hr, mtadt

from cls.mta where direction = 'I') as lhs
left join

(select plaza, hr, mtadt, vehiclescash
from cls.mta where direction = 'I') as rhs

on
lhs.plaza = rhs.plaza
and lhs.hr >= rhs.hr
and lhs.mtadt = rhs.mtadt

group by lhs.plaza, lhs.mtadt, lhs.hr
order by 1,2,3

plaza mtadt hr cum_sum
------- ---------- ---- ---------

1 2010-01-01 0 474
1 2010-01-01 1 1191
1 2010-01-01 2 1855
1 2010-01-01 3 2450
1 2010-01-01 4 2997

[...]

• These two examples have a set of common properties: we need to aggregate over our table while
returning the original table. Doing this using the techniques we’ve seen in the past is cumbersome,
so we can use Analytic (sometimes called window or partition functions) to solve them.

• Analytic functions use the following syntax:

function () over(
partition by ______________
order by ______________
<WINDOW FRAME CLAUSE>

)

function can be one of any of our standard aggregate functions (SUM, COUNT, MAX, MIN, AVG)
as well as a number of functions that can only be used as analytic functions.

There are a few pieces of the syntax:

1. The OVER() clause: This tells the database to expect a window function, rather than a standard
aggregate function. This is required when using analytic functions.

2. The PARTITION BY clause: This clause tells the database how to break up the data. In other
words, it is similar to a GROUP BY in that it tells the database that rows with the same values
should be treated as a single entity or partition. The PARTITION BY clause is optional.

3. The ORDER BY clause: This clause works just as an ORDER BY in a normal SQL query
works. It tells the database how to sort the data within each partition. The ORDER BY clause
is optional. If an ORDER BY clause is present then the function is calculated in a running

168

D
RA
FT

fashion – e.g. as a running some from the start of the partition to the current row.

4. The WINDOW FRAME clause defines the region over which the function is calculated. It takes
on a number of different forms though the most common is the rows between syntax:

ROWS BETWEEN ____________ AND __________

the blanks would take on some of the following values:

– UNBOUNDED PRECEDING: from the start of the partition

– UNBOUNDED FOLLOWING: to the end of the partition

– XX PRECEDING: XX rows preceding (inclusive)

– XX FOLLOWING: XX rows following (inclusive)

– CURRENT ROW: the current row

In other words we can use this syntax to easily compute things like hourly moving averages or
just smoothing.

• Lets use analytics functions to solve the two problems at the start of this section. To solve the first
one we can do the following:

select
plaza
, hr
, vehiclescash::float/sum(vehiclescash) over(partition by plaza) as pctperhr
, vehiclescash
, sum(vehiclescash) over(partition by plaza) as ALLVech

from
cls.mta

where
mtadt = '2016-11-10' and direction = 'I'

order by 1,2;

plaza hr pctperhr vehiclescash allvech
------- ---- ---------- -------------- ---------

1 0 0.0230918 167 7232
1 1 0.017146 124 7232
1 2 0.00954093 69 7232
1 3 0.00940265 68 7232
1 4 0.0199115 144 7232

[...]

the OVER clause, which modifies the SUM function, tells the database that it is going to be computing
an aggregate function, but without the aggregation. In other words, it will return the same value for
each row.

• To be clear on what this is doing, let’s consider only a single plaza (#1) and look at the hourly data
for that day, including the analytic function:

169

D
RA
FT

select
plaza
, hr
, vehiclescash
, sum(vehiclescash) over(partition by plaza) as totalcars

from
cls.mta

where
mtadt = '2016-11-10'
and direction = 'I'
and plaza = 1;

plaza hr vehiclescash totalcars
------- ---- -------------- -----------

1 0 167 7232
1 1 124 7232
1 2 69 7232
1 3 68 7232
1 4 144 7232
1 5 215 7232
1 6 281 7232
1 7 336 7232
1 8 329 7232
1 9 304 7232
1 10 344 7232
1 11 286 7232
1 12 308 7232
1 13 375 7232
1 14 361 7232
1 15 471 7232
1 16 450 7232
1 17 451 7232
1 18 420 7232
1 19 446 7232
1 20 366 7232
1 21 322 7232
1 22 296 7232
1 23 299 7232

The sum of vehiclescash on this subset is 7,232 – the exact number returned by the analytic function
in the total cars column.

• To solve the cumulative sum problem we can use an analytic function in the following manner:

170

D
RA
FT

select
plaza, mtadt, hr,
sum(vehiclescash) over(

partition by plaza, mtadt
order by hr
rows between unbounded preceding and current row) as cum_sum

from
cls.mta

where
direction = 'I'

plaza mtadt hr cum_sum
------- ---------- ---- ---------

1 2010-01-01 0 474
1 2010-01-01 1 1191
1 2010-01-01 2 1855
1 2010-01-01 3 2450
1 2010-01-01 4 2997

[...]

• To get more insight into the specifics of how analytic functions work, consider the following table:

GRP ORD NM C0 C1 C2 C3

1 1 5 65 33 5 11
1 2 6 65 33 11 21
1 3 10 65 33 21 28
1 4 12 65 33 33 22
2 1 12 65 32 12 22
2 2 10 65 32 22 28
2 3 6 65 32 28 20
2 4 4 65 32 32 10

In this table the raw data is GRP, ORD and NM. In order to create columns C1, C2 and C3 we use
the following syntax:

SUM(NM) OVER() as C0
SUM(NM) OVER(PARTITION BY GRP) as C1
SUM(NM) OVER(PARTITION BY GRP ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as C1
SUM(NM) OVER(PARTITION BY GRP ORDER BY ORD ASC) as C2
SUM(NM) OVER(PARTITION BY GRP ORDER BY ORD ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS C3

• NOTE: The default behavior of different analytic functions when using different sets of arguments
can lead to issues. I have a few cases memorized, but I’d recommend being as inclusive as possible
with the arguments. In the example above, C1 is presented twice, both would return the same
numbers, but the second makes it more clear as to what is happening.

• All of the aggregate functions we used in the past (MAX, MIN, COUNT and AVG) can be used with
analytic functions. For example, to create a moving average based on the last 4 hours of data in the
MTA dataset we could do the the following. Note that the ROWS BETWEEN function is inclusive,
so it will average over four hours in the below.

171

D
RA
FT

select
plaza
, direction
, hr
, mtadt
, vehiclescash + vehiclesez as totalcars
, avg(vehiclescash + vehiclesez)

OVER(PARTITION by plaza, direction
ORDER BY mtadt asc, hr asc
ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) as hravg

from
cls.mta;

plaza direction hr mtadt totalcars hravg
------- ----------- ---- ---------- ----------- -------

1 I 0 2010-01-01 889 889
1 I 1 2010-01-01 1419 1154
1 I 2 2010-01-01 1223 1177
1 I 3 2010-01-01 1075 1151.5
1 I 4 2010-01-01 945 1165.5

[...]

• If we use a WINDOW FRAME clause without an ORDER BY then the row order returned is
arbitrary.

• The only aggregate function not allowed is COUNT(DISTINCT) which cannot be used with the
OVER() clause.

• There are a number of non-aggregate functions that can be used as analytic functions:

1. LAG() and LEAD(): These functions return the value of a column from a preceding or following
row.

2. FIRST VALUE(), LAST VALUE() and NTH VALUE() : These function return the first, last,
or more generally, the nth value within a partition. Note that the NTH VALUE function takes
not only a column name, but a positional argument starting at 1. It will return null if there
aren’t enough values within the partition.

3. NTILE(): This function handles percentiles.

4. ROW NUMBER(): This function returns the row number based on the criteria established in
the clause. Note that the function ROW NUMBER() fails without an OVER clause.

5. RANK(): Returns the rank of a particular observation

6. DENSE RANK(): Returns the dense rank of a particular observation.

• The commands ROW_NUMBER, RANK and DENSE_RANK behave similarity when the data being sorted
is unique. If the data is not unique, however, these commands behave differently, as demonstrated
in the Table 10.1

• These functions allow us to easily answer a number of questions (without using JOIN). Such as what
is the correlation between the absolute (nominal) change in vehicles paying cash and the absolute
(nominal) change in vehicles paying by EZ-pass?

172

D
RA
FT

ID ROW NUMBER RANK DENSE RANK

1 1 1 1
1 2 1 1
1 3 1 1
1 4 1 1
2 5 5 2
2 6 5 2
3 7 7 3

Table 10.1: Ranking function differences when ordering by the ID columns

SELECT
CORR(CashDiff, EZDiff) as DiffCor

FROM
(SELECT

LAG(vehiclesEZ) OVER(PARTITION BY plaza
ORDER BY mtadt ASC, hr asc)

- vehiclesEZ AS EZDiff
, LAG(vehiclescash) OVER(PARTITION BY plaza

ORDER BY mtadt ASC, hr asc)
- vehiclescash AS CashDiff

FROM
cls.mta) as innerQ;

diffcor

0.744516

• These types of functions are evaluated after with SELECT after GROUP, JOIN, WHERE and
HAVING. This means that you can’t refer to them within those functions. If you want to filter on a
window function it must be contained within a subquery.

• An important caveat when using these functions, as said from the documentation (emphasis mine):

By default, if ORDER BY is supplied then the frame consists of all rows from the start of
the partition up through the current row, plus any following rows that are equal to
the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition.

This is weird:

173

D
RA
FT

select
plaza, mtadt, hr, direction
, vehiclesez
, sum(vehiclesez)

over(partition by plaza order by mtadt, hr
rows between unbounded preceding

and current row) as runningS1
, sum(vehiclesez)

over(partition by plaza order by mtadt, hr) as runningS2
from

cls.mta
where plaza = 1 and mtadt = '2010-01-01' and hr < 3;

plaza mtadt hr direction vehiclesez runnings1 runnings2
------- ---------- ---- ----------- ------------ ----------- -----------

1 2010-01-01 0 I 415 415 801
1 2010-01-01 0 O 386 801 801
1 2010-01-01 1 I 702 1503 2037
1 2010-01-01 1 O 534 2037 2037
1 2010-01-01 2 I 559 2596 3106

[...]

This is weird because when you omit ROWS BETWEEN, the running sum is computed as if rows
which have similar values in the partition are the same. The same query however, with a ROWS
BETWEEN clause computes a running sum while ignoring the duplicate rows.

2 Using Analytic Functions with Transaction Data

• In this section we return to trying to understand the revenue behavior of our soap transaction data.
Just like before we are going to use the notion of a cohort to help our analysis.

• Consider the data in Table 9.1 which contains information on users who were making certain trans-
actions.

• Let’s begin by calculating the revenue per user by locale and also by their install time period.

• We didn’t even attempt this in the previous section because it involved so many joins! Using Analytic
functions allows us to skip many of those issues!

174

D
RA
FT

select
cohort
, locale
, count(distinct userid) as numusers
, sum(case when trans_dt::date <= (cohort + '1 month'::interval)::date

then amt else 0 end) as mon_0_amt
, sum(case when trans_dt::date <= (cohort + '2 month'::interval)::date

then amt else 0 end) as mon_1_amt
, sum(case when trans_dt::date <= (cohort + '3 month'::interval)::date

then amt else 0 end) as mon_2_amt
from
(select

first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans) as innerQ

GROUP BY 1,2

cohort locale numusers mon_0_amt mon_1_amt mon_2_amt
---------- -------- ---------- ----------- ----------- -----------
2016-01-01 Canada 4706 162262 167287 223375
2016-01-01 Mexico 3920 186854 190914 224451
2016-01-01 U.S. 12676 542198 599027 637072
2016-02-01 Canada 4334 147535 152976 206147
2016-02-01 Mexico 3602 171472 175171 208097
[...]

• Let’s calculate the percentage of revenue that each transaction represents for each userid (how would
we do this without Analytic Functions?):

select
userid, trans_dt, amt
, amt/sum(amt) over(partition by userid) as pct

from
cls.trans

userid trans_dt amt pct
-------- ---------- ----- -----

1 2016-05-09 23.98 1
2 2018-08-25 12.99 1
3 2017-03-05 43.16 0.5
3 2017-04-05 43.16 0.5
4 2016-02-28 59.95 1

[...]

• I want to calculate the percentage likelihood that a person who has made X purchases makes another
one. There are a number of different ways that this can be done, but we can use analytic functions:

175

D
RA
FT

select
transNum
, sum(case when transNum = totalTrans then 1 else 0 end)::float
/ count(1) as pct
, count(1) as numerator

from
(select

row_number() over(partition by userid order by trans_dt) as transNum
, count(1) over(partition by userid) as totalTrans

from
cls.trans) as innerQ

group by 1
order by 1;

transnum pct numerator
---------- -------- -----------

1 0.529178 574289
2 0.538423 270388
3 0.58621 124805
4 0.644172 51643
5 0.686276 18376

[...]

3 Common Table Expressions (“CTE”)

• A relatively new piece of SQL syntax is WITH, which allows for tables to be defined and used
repeatedly within a query. These are called Common Table Expressions. CTE are incredibly powerful
ways of writing queries, but they can come with significant downsides (as we will discuss later).

From PostgreSQL’s documentation:

A useful property of WITH queries is that they are evaluated only once per execution of
the parent query, even if they are referred to more than once by the parent query or sibling
WITH queries. Thus, expensive calculations that are needed in multiple places can be
placed within a WITH query to avoid redundant work. Another possible application is to
prevent unwanted multiple evaluations of functions with side-effects. However, the other
side of this coin is that the optimizer is less able to push restrictions from the parent query
down into a WITH query than an ordinary sub-query. The WITH query will generally
be evaluated as written, without suppression of rows that the parent query might discard
afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to
the query demand only a limited number of rows.)

• The motivation for CTE is that they can increase readability in query by defining a table at the start
of your query which only exists for the duration of the query.

• The WITH clause is used to start a CTE and it basically sets up a derived table that can be used in
the query.

• Consider the following example:

176

D
RA
FT

with only_inbound as (select * from cls.mta where direction = 'I')

select * from only_inbound limit 100;

plaza mtadt hr direction vehiclesez vehiclescash
------- ---------- ---- ----------- ------------ --------------

2 2013-10-14 16 I 2469 336
2 2013-10-14 17 I 2853 425
2 2013-10-14 18 I 2575 394
2 2013-10-14 19 I 2422 344
2 2013-10-14 20 I 1989 339

[...]

The basic syntax of the query is that we define a table via a query at the start using a WITH clause.
This table does not have a schema and can only be referenced within that query.

• We can use CTEs with multiple queries by separating them with commas:

with
only_inbound as (select * from cls.mta where direction = 'I')
, only_outbound as (select * from cls.mta where direction = 'O')

select
plaza, mtadt, hr
, only_inbound.vehiclesez as inbound_ez
, only_outbound.vehiclesez as outbound_ez

from
only_inbound

join
only_outbound

using(plaza, mtadt, hr)

limit 10;

plaza mtadt hr inbound_ez outbound_ez
------- ---------- ---- ------------ -------------

2 2013-10-14 17 2853 2116
2 2013-10-13 11 2960 2081
2 2013-10-12 17 2847 2433
2 2013-10-10 1 189 177
2 2013-10-10 3 118 140

[...]

• Where I find CTEs to be useful is when there are multiple layers of logic that need to be implemented.
By using a CTE I can break up that application logic into separate pieces that are easier to read.

177

D
RA
FT

4 CTEs with the transaction data

• To use the WITH clause you specify a table name and then use AS. It is done before the SELECT
in the query. For example, the following creates a table that only looks at unit transactions from the
United States. We then use this figure out the average order value of these transactions:

with USUnits as (
select * from cls.trans
where locale = 'U.S.' and type = 'Units')

select avg(amt) as AOV from USUnits;

aov

43.3045

• Consider the following, more useful, example which creates an LTV dataset which has the first value
of the local of purchase.

with LTVData as (select
first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans)

select * from LTVData where locale = 'U.S.' limit 100;

locale cohort amt userid trans_dt
-------- ---------- ----- -------- ----------
U.S. 2016-05-01 23.98 1 2016-05-09
U.S. 2017-03-01 43.16 3 2017-03-05
U.S. 2017-03-01 43.16 3 2017-04-05
U.S. 2016-02-01 59.95 4 2016-02-28
U.S. 2016-01-01 99.95 6 2016-01-05
[...]

• We can also have multiple tables defined:

178

D
RA
FT

with
LTVData as (select

first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans)

, SubScribersFirst as (select distinct userid from
(select userid, first_value(type) over(partition by userid

ORDER BY trans_dt asc, type asc) as firsttype
from cls.trans) as innerQ

where firsttype = 'Sub')
select

*
from

SubScribersFirst
left join

LTVData
using(userid);

userid locale cohort amt trans_dt
-------- -------- ---------- ----- ----------

2 Canada 2018-08-01 12.99 2018-08-25
3 U.S. 2017-03-01 43.16 2017-03-05
3 U.S. 2017-03-01 43.16 2017-04-05
5 Canada 2018-03-01 17.98 2018-03-09
5 Canada 2018-03-01 17.98 2018-05-09

[...]

• The upside of using a CTE is that they can be much easier to read.

• There are two major downsides to using CTEs:

1. Some databases do not support them (MySQL)

2. In other databases they can act as optimization barriers. In particular, consider the following
query:

179

D
RA
FT

with
LTVData as (select

first_value(locale)
over(partition by userid order by trans_dt asc) as locale

, date_trunc('month', first_value(trans_dt)
over(partition by userid order by trans_dt asc)) as cohort

, amt, userid, trans_dt
from

cls.trans)
select

*
from

LTVData
where userid = 2;

locale cohort amt userid trans_dt
-------- ------------------------- ----- -------- ----------
Canada 2018-08-01 00:00:00+00:00 12.99 2 2018-08-25

In this example, it is clear that the filter WHERE userid = 2 could be applied within the
LTVData expression. However, it is not and the database will compute the entire LTVData
before applying the filter, a costly choice. We will explore performance considerations in the
next section.

180

