Chapter 11

Database Internals: Performance
Evaluation
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1 Normalization

e Up to this point we have taken the data in a database as a given without consideration as to what a
database should look like. In this section we will introduce some of the major concepts around these
database design decisions, starting with the process of normalization.

e To motivate this, we need to go back in time and consider one of the common critiques of the relational
system originally proposed by Codd, which was that when data within a database is changed there
were possible negative side effects. The database normalization process is a set of rules, which if done
correctly, will limit the likelihood of this these issues, called anomalies occurring.

1.
2.

Deletion Anomaly: Non-database information lost due to deleting data within the database.

Insertion Anomaly: Incomplete data may mean that we cannot insert information while
keeping the database consistent.

. Update Anomaly: When the database is updated, multiple updates may be required to

maintain consistency.

e In order to understand these issues, consider the following tables describing faculty at a school.

Figure 11.1: faculty table

‘ FID ‘ Faculty ‘ HireDt ‘ Dept ‘ Deanl Dean2 Mentor
1 Hamrick | 8/95 Finance Big Boss Little Boss Afraid
2 Ross 2/12 | Accounting | Small Boss | Medium Boss | Uminsky
3 Parr 2/85 CS Medium Boss | Small Boss | Hamrick
4 Uminsky | 8/11 Math Big Boss Biggest Boss Tao

e Using the table above, how do we write a query which lists all the departments?

select distinct dept from faculty;

e Using the table above, how do we write a query which returns the number of faculty?

select count (*x) from faculty;

e What can go wrong:

— Deletion Anomaly: What happens when the last Ancient Greek Professor retires? The query

above will no longer return Ancient Greek as a department — but the department may still exist!

— Insertion Anomaly: We decide to introduce a new major, but have not hired a professor in

that department yet. The query above will not reflect the new department. If we add a row with
Null professor to add this information the database becomes inconsistent because the second
query above no longer returns the expected information.

Update Anomaly: In order to get more students, Mathematics decides to change the name of
their department to “Mathematical Sciences.” In order to make this single “fact” change every
row in the database related to a math professor must change. if something happened in the
middle of the update or if some professor misreported their major next year we would have two
math departments when only one should exist.

e How do we avoid this? We normalize the table. There are a bunch of different criteria for normal-
ization forms. In our case we will go over a few of the most common (1%¢,2"%and3™ normal forms.
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Wikipedia currently lists six ordinal normal forms as well as a few named other version, the most
commonly mention (in my experience), being Boyce-Codd Normal Form (“BCNE”).

e First Normal Form:

1. All values within a cell are atomic — there is not a cell which contains multiple values. For
example, there is no column phone numbers which contains multiple phone numbers in the
same row.

2. Each table has a key which logically defines a record.

3. No repeating columns.

e In our example we violate the no repeating columns rule! So we rewrite the table to avoid this:

Figure 11.2: faculty table

‘ FID ‘ Faculty ‘ HireDt ‘ Dept ‘ Dean DeanNo ‘ Mentor ‘

1 Hamrick | 8/95 Finance Big Boss 1 Afraid

1 | Hamrick | 8/95 Finance Little Boss 2 Afraid

2 Ross 2/12 | Accounting | Small Boss 1 Uminsky
2 Ross 2/12 | Accounting | Medium Boss 2 Uminsky
3 Parr 2/85 CS Medium Boss 1 Hamrick
3 Parr 2/85 CS Small Boss 2 Hamrick
4 | Uminsky | 8/11 Math Big Boss 1 Tao

4 | Uminsky | 8/11 Math Biggest Boss 2 Tao

In this table, what logically defines a row is the faculty-dean combination.

e While the table above moves us toward avoiding the anomalies mentioned above (for example, it is

now way easier to change a Dean’s name), it still is not a great solution.

e 2nd normal form continues this process, by adding an additional constraint:

1. All the rules from first normal form

2. No secondary key (or subset of other key) can have a functional dependency on another attribute.
Generally this occurs when you have repeating rows of data related to the key.

In order to implement this normalization procedure we will need to create a new table since we cannot
have any repeating rows.

‘ FID ‘ Faculty ‘ HireDt ‘ Dept ‘ Mentor ‘ ‘ FID ‘ Dean DeanNo
1 | Hamrick | 8/95 Finance Afraid 1 Big Boss 1
2 Ross 2/12 | Accounting | Uminsky 1 Little Boss 2
3 Parr 2/85 CS Hamrick 2 Small Boss 1
4 | Uminsky | 8/11 Math Tao 2 | Medium Boss 2
3 Medium Boss 1
3 Small Boss 2
4 Big Boss 1
4 Biggest Boss 2

Figure 11.3: Second Normal Form
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e However, this doesn’t alleviate all possibility of all the anomalies that we have listed. In order to do
that we can try to put the database into third normal formal:

1. All the rules for second normal form

2. “Facts” should be independent of the key information that they contain XXX

e In order to put this database in third normal form we need to add a lot of tables.

| FID | Faculty | HireDt |

DeptID ‘ DeptName ‘

1
2
3
4

Hamrick

Ross
Parr

Uminsky

| FID | MentorFID |

1
2
3
4

92

85

| FID | DID | DeanNo

1

=k W W NN

1

Tt Wk &= W

8/95 10 Finance
2/12 12 Accounting
2/85 13 CS
8/11 40 Math
| DID' | Dean |
1 Big Boss
2 Little Boss
3 Small Boss
4 Medium Boss
) Biggest Boss
1 | FID | DeptID |
2 1 10
1 2 12
2 3 13
1 4 40
2
1
2

Figure 11.4: Third Normal Form

e The positive of putting the database into third normal form is that you minimize the risk of creating
one of the anomalies specified above.

e There are, however, a few downsides:

1. Many, many tables were created.

2. The additional tables will need additional effort by the database admins (cost)

3. With the addition of some many tables, queries may require multiple joins. Doing additional
joins may put additional stress on the database.

2 Views

e Normalization frequently leads to schema with lots and lots of tables and, with that, lots of joins that
get repeated over and over again in queries. Luckily, relational databases have a system for storing
queries within the database without replicating the data. This structure is called a view and can be
considered a stored query that gets accessed like a table.
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e For example lets consider the case where we frequently want to look at Motor Homes from Polk
county in our Iowa cars table. We could write the following query to get the data:

select « from cls.cars where countyname = 'Polk' and vehiclecat = 'Motor Home';

but if we were doing this frequently we could store this as a view instead using the following command:

CREATE VIEW cls.polk_motor_homes as (select x from cls.cars where countyname = 'Polk' and vehiclecat = 'Motor Home');

e Let’s take a look at the following query and what it returns:

select
table_name
, table_schema
, table_type
from information_schema.tables
where table_name in ('cars', 'columns');

VIEW

cars cls

e The table type for cars is called a “BASE TABLE” and is the standard table type in the database.

e The columns table, on the other hand, is not a table, it is a view. A view is a stored query
masquerading as a table. If we run the following query and look at the results you can see the
underlying query!

select
table_name
, view_definition
from
information_schema.views
where table_name = 'columns';
table name | view_definition
____________ o
columns | SELECT (current_database()) ::information_schema.s

The view_definition has been truncated as the query underlying this view is long. The premise,
however, is straightforward: each time the table “columns” is accessed, the query in the view definition
is executed.

e We can define a view using any select query. If we are analyzing Motorcycle registrations from Lucas

County frequently we could execute the following query:
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create view cls.mc_lucas as

select
countyname
, year
, registrations

from cls.cars
where countyname ='Lucas'
and vehicletype = 'Motorcycle';

This would create a view which we could easily access using SQL and it will also be in the informa-
tion_schema:

select =
from mc_lucas
order by year;

countyname | year | registrations
____________ o
Lucas | 2005 | 530
Lucas | 2006 | 586
Lucas | 2007 | 606
Lucas | 2008 | 592
Lucas | 2009 | 587
Lucas | 2010 | 588
Lucas | 2011 | 578
Lucas | 2012 | 582
Lucas | 2013 | 586
select

table_name

,table_type
from

information_schema.tables
where table_name = 'mc_lucas';

table_name | table_type

e As before, the query defining the view is found in the “views” table:
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select
table_name, view_definition
from information_schema.views

where table_name = 'mc_lucas';

—[ RECORD 1 Jm—mdmmm oo
table_name | mc_lucas

view_definition | SELECT cars.countyname, +
| cars.year, +
| cars.registrations +
| FROM cls.cars +
| WHERE (((cars.countyname) ::text = 'Lucas'::text) +
| AND ((cars.vehicletype) ::text = 'Motorcycle'::text));

As shown above, the original query defining the view has been modified by the database. This
modification does not change what the query returns.

e In order to get rid of the view, we use the DROP VIEW command:

drop view cls.mc_lucas;

At which point in time the view is removed.
e Why are views useful?

— Shared Query: If an entire team is doing a set of analysis on a particular topic, using a view
to create a common table can ensure consistency between different team members.

— Version Control: As team members learn about a topic they can use views to keep everyone
up-to-date with the latest findings. For example, a table with the name “Fraud” which detects
fraudulent transactions can be updated to include new algorithms for detecting fraud without
everyone having to re-write their queries.

— Laziness: Using a view means less typing for everyone!
e Downside of views:

— Performance considerations: For a number of reasons, views tend to be less performant
than using a real query. In some relational databases, views can act as an optimization barrier.
Consider the following example:

select x from cls.mc_lucas where county = 'Lucas';

In this example, the underlying mc_lucas view removes all rows which do not refer to Lucas
county. However, in some circumstances the view will act as an optimization barrier and check
each row twice, once in the view and once in the outer where, to verify that the rows are from
Lucas county.

— Proliferation of Views: If everyone on a data team is allowed to create views the tendency
is for the number of views to explode. If there are too many views it becomes difficult to find
and they go unused.
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Information Schema

Returning to Codd and his 4th rule:

The database is represented at the logical level the same way as ordinary data, so that
authorized users can apply the same relational language to its interrogation as they apply
to the regular data

e What does this mean? Reading it closely, note that Codd is saying that the database itself is
represented the same way as ordinary data. Users of the database should be able to use the same
relational language (SQL) to get answer questions about the database.

e In other words: Everything about the database is in the database itself.

e Unfortunately, this representation is specific to the SQL variant. Postgres contains database specific
information in a variety of places, though the most common place to-access it is via the tables in the
schema “information_schema”

— Tables contains information on the tables within the database.
— Columns contains column specific information
— Views contains information on views, which we will discuss later.

e For example:

select

*
from

information_schema.columns
where

column_name = 'registrations';

Will return all the information about the registrations column from the cars table.

e Detailed information about the columns in each table:
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select

column_name

, data_type
from

information_schema.columns
where table_name ='cars';
column_name | data_type
___________________ e
year | integer
yearending | date
countyname | character varying
countycode | integer
motorvehicle | character varying
vehiclecat | character varying
vehicletype | character varying
tonnage | character varying
registrations | integer
annualfee | double precision
primarycountylat | double precision
primarycountylong | double precision
primarycountycord | character varying

With this query we can identify the data types associated with each column, which should match
the data types used to define the table.

e We can write queries against the information schema using any SQL functionality. For example, we
could identify all the character columns with the following;:

select =
from

information_schema.columns
where

data_type like 'char%';

e A common question asked by new users of SQL is if it is possible to store additional data about the
database within a table. The answer is “Yes” — you can create a table which contains information
about the database, but that table will have to updated by hand. There is no automatically generated
data dictionary created when using a relational database.

4 Performance Considerations

Before talking about query performance and how to measure it we need to discuss two important ques-
tions:

1. How the data is stored on the hard drive:

e The easiest mental model for how data is stored on a hard drive is to consider the database as
a record player, where each row is stored on the hard drive in a random order, back-to-back. In
other words, where one row ends another row begins.

190



e There are a couple of interesting aspects to why this is important. First off, if every row is the
same length then finding the start and end of a row can be pretty easy. For example, if every
row is 25 bytes long, then going to the fifth row entails simply seeking ahead 25 -5 = 125 bytes.
If the rows are arbitrarily long, then this process can take some time.

e The above is why there is a difference between char and varchar data types. A char datatype is
a fized length while a varchar is of variable length. In some database systems storing data as a
char can increase performance signiﬁcantlyﬂ

e In order to find data on a database, the computer must seek around the drive, which is incredibly
slow, even on modern databases. Consider the following table which describes the relative speed
of different random access levels. [

Figure 11.5: Access Speeds

Access type Actual time Approximated time
1 CPU cycle 0.3 ns 1s

Level 1 cache access 0.9 ns 38

Level 2 cache access 2.8 ns 9s

Level 3 cache access 12.9 ns 43.s

Main memory access 120 ns 6 min
Solid-state disk I/O 50-150 pus 2-6 days
Rotational disk I/O 1-10 ms 1-12 months
Internet: SF to NYC 40 ms 4 years
Internet: SF to UK 81 ms 8 years
Internet: SF to Australia 183 ms 19years

Looking at this table, you can see that seeking data, even on an SSD, can be incredibly slow
in comparison to processing speeds. Fundamentally, a database stores data and attempts to
provide access to it as quickly as possibly — so it is always running up against this hurdle.

2. How the database decides how to execute a particular query:

e Basically, the database takes your SQL query and runs it through a database optimizer which
rewrites your query a number of different ways and then estimates how long each way will take.
The database will then execute the one that it believes will take the smallest amount of time.

e The query optimizer can often be wrong.

e There are a number of different ways that it can be wrong, but most of them relate to “cost” —
or how long the database thinks a particular operation will cost. In order to estimate the cost,
the database keep statistics on each table and column. For example, consider the following:

1This is not true of Postgres, which stores both varchar and char the same way.
2Source: https://madusudanan.com/blog/understanding-postgres—caching-in-depth/
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select » from pg_stats where tablename = 'mta' and attname = 'direction' ;

—[ RECORD 1 ]-—————————F————————
schemaname cls

tablename mta

attname direction
null_frac 0

avg_width 2

n_distinct 2
most_common_vals {I,0}

+
|
|
|
inherited | £
|
|
|
|
most_common_freqgs | {0.5276,0.4724}
histogram_bounds |
correlation | 0.450035
most_common_elems |
most_common_elem_freqgs |

|

elem_count_histogram

This query contains information on the direction column within the MTA table. You can see
that there is a host of information about the contents. This includes the frequency information.
However:

select count(l), direction from cls.mta group by 2;

—-[ RECORD 1 ]-———-
count | 613608
direction | I
-[ RECORD 2 ]—-————-—
count | 552120
direction | O

ncross=# select 613608.0 / ( 552120 + 613608.0);
—[ RECORD 1 J-———————————————————
?column? | 0.52637321913859836943

The frequency information is not correct!

e The database itself does not keep perfect statistics on each column, it would take too long and
instead runs on estimates that it will occasionally update.

So how can we know what the database is doing and if it is being efficient?

Every major relational database system has a query analyzer or “explain” which gives you insight
into what the database is doing.

With Postgres, there are two commands that are used to do this: EXPLAIN and EXPLAIN ANA-
LYZE. Generally speaking these commands do not show up nicely when using an SQL client, using
psql will result in better output.

EXPLAIN will tell you what the query optimizer thinks will happen while EXPLAIN ANALYZE
will return both what the query optimizer thought would happen and what actually happened.

Let’s look at the following example:
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ncross=# explain analyze select plaza, sum(hr) from cls.mta where hr = 1 group by 1 having plaza = 2;
QUERY PLAN

GroupAggregate (cost=0.00..24937.72 rows=1 width=8) (actual time=149.688..149.688 rows=1 loops=1)
Group Key: plaza
-> Seqg Scan on mta (cost=0.00..24911.92 rows=5159 width=8) (actual time=15.469..148.941 rows=5124 loops=1)
Filter: ((hr = 1) AND (plaza = 2))
Rows Removed by Filter: 1160604
Planning time: 0.074 ms
Execution time: 149.731 ms
(7 rows)

ncross=# explain analyze select plaza, sum(hr) from cls.mta where plaza = 2 and hr = 1 group by 1;
QUERY PLAN

GroupAggregate (cost=0.00..24937.72 rows=1 width=8) (actual time=137.129..137.129 rows=1 loops=1)
Group Key: plaza
-> Seqg Scan on mta (cost=0.00..24911.92 rows=5159 width=8) (actual time=13.293..136.394 rows=5124 loops=1)
Filter: ((plaza = 2) AND (hr = 1)
Rows Removed by Filter: 1160604
Planning time: 0.071 ms
Execution time: 137.163 ms
(7 rows)

e In the above we can see that the query plan is the same for the two queries despite the use of the
HAVING clause in the first. In other words, the database was smart enough to'remove the plazas
which were not equal to 2 before doing the aggregation.

e In order to read these you start from the bottom and go up.

e Another one. CTE acting as optimization blocker

explain analyze with
MTALTV as (select
plaza, mtadt, hr, direction
, sum(vehiclesez) over (partition by plaza order by mtadt, hr rows between unbounded preceding and current row) as runnings

from
cls.mta)
select
*
from
MTALTV
where plaza =1 and hr = 0 and mtadt = '2010-01-01' and direction = 'I'

QUERY PLAN

CTE Scan on mtaltv (cost=186684.07..221655.91 rows=1 width=28) (actual time=898.385..1960.692 rows=1 loops=1)

Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01'::date) AND ((direction)::text = 'I'::text)
Rows Removed by Filter: 1165727
CTE mtaltv

-> WindowAgg (cost=160455.19..186684.07 rows=1165728 width=22) (actual time=898.361..1541.795 rows=1165728 loops=1
-> Sort (cost=160455.19..163369.51 rows=1165728 width=18) (actual time=897.422..1058.579 rows=1165728 loops=1)

Sort Key: mta.plaza, mta.mtadt, mta.hr

Sort Method: external merge Disk: 34232kB

-> Seq Scan on mta (cost=0.00..19083.28 rows=1165728 width=18) (actual time=0.022..202.735 rows=1165728 loops=1
Planning Time: 0.293 ms
Execution Time: 1985.602 ms
(11 rows)
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explain analyze with
MTALTV as (select
plaza, mtadt, hr, direction
, sum(vehiclesez) over (partition by plaza
order by mtadt, hr rows
between unbounded preceding and current row) as running$S

from
cls.mta
where plaza =1 and hr = 0 and mtadt = '2010-01-01' and direction = 'I'
select
*
from
MTALTV
limit 100;

QUERY PLAN
Limit (cost=27826.27..27826.31 rows=2 width=20) (actual time=19.346..147.565 rows=2 loops=1
CTE mtaltv
-> WindowAgg (cost=0.00..27826.27 rows=2 width=16) (actual time=19.342..147.555 rows=2 loops=1)
—-> Seq Scan on mta (cost=0.00..27826.24 rows=2 width=16) (actual time=19.314..147.520 rows=2 loops=1)
Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01'::date)
Rows Removed by Filter: 1165726
—-> CTE Scan on mtaltv (cost=0.00..0.04 rows=2 width=20) (actual time=19.344..147.561 rows=2 loops=1)
Planning time: 0.108 ms
Execution time: 147.609 ms
(9 rows)

explain analyze select
plaza, mtadt, hr
, sum(vehiclesez) over (partition by plaza
order by mtadt, hr rows
between unbounded preceding and current row) as runnings$S
from
cls.mta
where plaza =1 and hr = 0 and mtadt = '2010-01-01' limit 100 ;
QUERY PLAN
Limit (cost=0.00..27826.27 rows=2 width=16) (actual time=19.450..137.015 rows=2 loops=1)
-> WindowAgg (cost=0.00..27826.27 rows=2 width=16) (actual time=19.448..137.011 rows=2 loops=1)
-> Seqg Scan on mta (cost=0.00..27826.24 rows=2 width=16) (actual time=19.435..136.992 rows=2 loops=1)
Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01"'::date))
Rows Removed by Filter: 1165726
Planning time: 0.116 ms
Execution time: 137.065 ms

e These commands give us a ton of insight into how a query is operating.

5 Index

e So what do we do if a query is slow?

e The easy answer is usually to add an index, which is a tree structure which allows for searching for

values quickly. Specifically, the goal of an index is to decrease the number of random hard drive
accesses.

explain analyze select retdate, symb, sum(cls) over(partition by symb order by retdate asc) from stocks.s2010 limit 10;

QUERY PLAN

Limit (cost=81387.26..81387.46 rows=10 width=40) (actual time=14700.353..14700.428 rows=10 loops=1)
-> WindowAgg (cost=81387.26..92327.78 rows=547026 width=40) (actual time=14700.351..14700.424 rows=10 loops=1)
-> Sort (cost=81387.26..82754.82 rows=547026 width=40) (actual time=14699.988..14700.059 rows=11 loops=1)
Sort Key: symb, retdate
Sort Method: external merge Disk: 23720kB
-> Seqg Scan on s2010 (cost=0.00..14293.26 rows=547026 width=40) (actual time=0.038..481.515 rows=816066 loops=1)
Planning time: 1.862 ms
Execution time: 14715.666 ms
(8 rows)

VS.
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create index tst2 on stocks.s2010 (symb, retdate);

explain analyze select retdate, symb, sum(cls) over(partition by symb order by retdate asc) from stocks.s2010 limit 10;
QUERY PLAN

Limit (cost=0.42..1.31 rows=10 width=16) (actual time=0.388..1.308 rows=10 loops=1)
-> WindowAgg (cost=0.42..72501.81 rows=816066 width=16) (actual time=0.386..1.302 rows=10 loops=1)
-> Index Scan using tst2 on s2010 (cost=0.42..58220.66 rows=816066 width=16) (actual time=0.301..1.077 rows=11 loops=1)
Planning time: 2.509 ms
Execution time: 1.715 ms
(5 rows)

drop index stocks.tst2;

e So why not use Index’s everywhere?

e The downside of using index is that they take additional hard drive space and increase the cost of any
additional data writes or updates. Since the index has to be kept up to date with the data on disk
this means that all writes or updates to any table needs to be reflected in changes to all appropriate
indexes.

e There are many different types of indexes and these different types allow for efficiencies for different
access methods. Examples include things like B-trees which allow for fast comparison operators

6 Distributed Systems and the CAP Theorem

e In this section we will start talking about distributed systems, or multiple computer systems which
are networked together to act as a single unit.

e When dealing with these systems, each computer is generally refereed to as a “node” and the entire
system called a “cluster.”

e Distributed systems work by spreading work around different nodes. For example, if you have a
10-node cluster and send it two queries, those queries will not necessarily land on the same node each
time and thus the physical machine returning the result to you might be different.

e Many instances require distributed systems because the amount of data generated is too large to be
handled by a single computer.

e Consider the following examples:

1. Zynga (2014)
500-1000 Node Vertica cluster
60B rows/day
10 TB/day

2. Sega (2015)
8 Node Redshift cluster
20 TB
Main Table had 4B rows
110MM rows/day
Incredibly spiky data flows

3. GSN (2014)
200 Node Vertica cluster
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Every 15 minutes 5MM rows loaded
Biggest table had 100B rows

e An important mathematical theorem governing these types of systems is called the CAP theo-

rem,

which is a non-existence result. The CAP theorem states that no distributed system can be

Consistent, Available and Partition tolerant. You can only choose two of these three things. Note
that this theorem is a mathematical result and like many such results there is an ongoing discussion of
how well the mathematical definitions of these terms line-up with reality. That discussion is beyond
the scope of this class.

Consistency: A system is consistent if all nodes within the system respond the same way to
the same query. For example, if you send a query to the first node in a cluster and it responds
with data X then that same query, if the second node responded, should also return data XE]

Availability: A system is available if, when one node goes‘down, the system is still able to
respond to questions.

Partition Tolerance: Nodes will continue to perform even if there is a disruption in commu-
nication between them.

e As an example, consider the following story of a startup that you create call 1—800—REMINDMEE]

The basic business model is that people call 1-800-REMINDME and then state their name and
something that they want to remember, such as “Jeff, T have a meeting at 8AM.”

If you call back it will return what you said the first time and charge them 10 cents.

Day #1: You sit down with your notebook and start writing down and responding to calls.
This works great!

Day #2: TechCrunch and VentureBeat both publish articles about your hot new startup. You
are now swamped and when people call they are getting busy signals!

Day #3: You add your sig-o to help, who sits in another room, on another line, with her
own notebook. Unfortunately, this-doesn’t work! Sometimes people call and get your sig-o,
sometimes they call and get you, but either way, some messages end up in their notebook and
some in yours:

Jeff: When is my meeting?
sig-o: You don't have a meeting.
Jeff: Wow. You suck.

This system is not consistent, as, depending on what node you contact you get different
responses.

Day #4: New plan! In order to make the system consistent you do the following: before
making any create or update operation confirm it with the other person:

Jeff to sig-o: My class is at 8AM

sig-o to you: Jeff, class at 8AM

you to sig-o: Jeff, class at 8AM confirmed.
sig-o to Jeff: confirmed.

3Note that this is a different type of consistency then the type of consistency we spoke of when talking about transactions

and ACID.

4This was taken from http://ksat.me/a-plain-english-introduction—-to-cap-theorem/
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— This slows down the system on writes, but reads are very quick and consistent since both you
and your sig-o’s notebook are the same.

— Day #5: Oh, no, sig-o get sick and sometimes run out of the room to throw-up! What happens
then...

Jeff to you: My meeting is at 9AM.
you to sig-o: Jeff, meeting at 9AM.
sig-o:

Jeff hangs up after 5 minutes

— This system is not available, when one node goes down the entire system fails.

— Day #6: New idea: If the other person is not reachable then write down all writes and send via
email to the other person. The other person does not start answering the phone after coming
back before checking their email for a list of all changes and verifying that all those writes are
in their system.

— This system is now consistent and available!

— Day #7: Your sig-o is pretty sick of this business and just stops talking to you, or sending
emails or responding at all. Once again you are stuck; because you don’t get an email from
them you don’t know what changes happened. Because you can’t confirm any transactions you
can’t do any updates or add new clients to your notebook.

— This system is not partition tolerant. If there is no communication between the nodes then
the system once again fails. Even though there is perfectly good information for many of 1-
800-REMINDME in your notebook, you can’t use it because the system that you have in place
requires verification from the non-responsive sig-o.

e The CAP theorem states that you can only really choose 2 of the 3 CAP elements.

e Different applications will require different attributes. For example, bank account information will
always want consistency — account balances should always report the same number.

e Note that there are also minor definitional changes in each of these. For example, many systems
have what is called eventual consistency. Redshift, one of Amazon’s offerings, promises consistency
within 60 seconds.
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