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1 What is Pandas

• Pandas is a Python library for manipulating data developed by Wes McKinney.

• Pandas itself is a front-end API for manipulating data that is stored in-memory. This type of tool is
often called an in-memory database and, when appropriate, this type of database is the far superior
than the relational databases that we have been talking about previously.

• The limitation of this type of database is that the data needs to be small enough to fit into your
computer’s RAM. For modern data analysis this is a major limitation as many data sets are far larger
than the present memory.

• The pandas documentation provides a nice summary of this:1

Figure 14.1: Pandas limitations

• Mentally, pandas consists of a front-end API and a backend in-memory data structure. Before version
2.0 the only backend that was in use was numpy. Specifically complex pandas data structures were
built upon numpy based objects.2

• The (still default) backend required significant memory use to store data. Per Wes McKinney, pandas
rule of thumb: have 5 to 10 times as much RAM as the size of your dataset, which is a pretty rough
standard to hew to.

• The latest release of pandas, version 2.0, which will be released in March, 2023 creates a more
significant abstraction between the back- and front-end API and allows for the use of Apache Arrow
as a backend storage structure in place of numpy.

• Apache Arrow is a columnar in-memory data structure which is optimized for vectorization via SIMD
(single instruction, multiple data) routines. By using the Apache Arrow backend, rather than numpy,
the ratio to dataset size to memory size is much more manageable.

• The Apache Arrow API is very similar to numpy, but has a number of additional types and also has
better support for missing values across types.

1Taken from https://pandas.pydata.org/docs/user_guide/scale.html
2Wes McKinney’s blog has a bunch of information about the decision making at the time, you can find it here: https:

//wesmckinney.com/blog/apache-arrow-pandas-internals/
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• Pandas is both powerful and useful, especially when doing data analysis. However it comes with
some significant downsides:

1. Pandas is more imperative than SQL which means you tell the interpreter what to do, step-by-
step. For data operations there are often many ways to undertake the same operation which
means that two people can write two very different Pandas expressions and generate the same
results.

2. Pandas is not persistent. It stores data in memory and, if the computer crashes, you lose it.

3. Pandas is only efficient when the size of data is small enough to “fit” into memory.

4. Pandas is not easily scalable across multiple computers.

• Since, at the time of the start of this course, version 2.0 has NOT been released, we
will still be leveraging version 1.5 in the course of this class.

• To begin we import the Pandas and NumPy packages. By convention, we usually do it as follows:

>>> import numpy as np

>>> import pandas as pd

• So, when should you use Pandas? You should use it when you have data that easily fits into your
computer’s memory and you wish to explore or perform straightforward analysis on that data.

2 Data structures

• Starting from the bottom there are a number of data types. The chart below shows how they line up
with underlying Python and Numpy types.

Description Pandas Type Numpy Type Python (built-in)

Integers int64 int8, int16, int32, int64, etc. int
Text object string, unicode str
Double/Float float64 float16, float32, float64 float
Boolean (T/F) bool bool bool
DateTime datetime64 datetime64 N/A

Table 14.1: Common Data Types

• The types above are how the underlying data is stored, what operations are allowed on it and how
those operations act. For example a “+” will do string concatenation when paired with two objects,
but will undertake mathematical addition when paired with floats and integers.

• In Pandas these underlying data types are what we put together to build the two basic data structures
that we find in Pandas: DataFrames and Series.

• To determine the type of a particular python object we use the type command:

>>> type( [1,2,3])

which will return list or <class 'list'>.

• The type function works on both underlying data types as well as the larger data structures.
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• An important thing to remember: Pandas is a bit inconsistent in its design and it is frequently
the case that a function, operation or something you do will inadvertently change your data. When-
ever diagnosing an issue in Pandas, make sure to check the type. You’ll often be surprised about
what you are working with.

• The way to think about both a Series and a DataFrame is that they are two objects (index and
values), combined. The value component contains the actual data while the index component is its
own object which has operations that are allowed on it. Note that index objects are complex and
can exist in both rows and columns. We will touch upon this a bit later.

Series

• A Series is one dimensional data object with an associated index.

• There are a number of different way to create a list. For example, consider the following two com-
mands which initialize two variables (“x 1” and “x 2”) which contain the same values.

• The “name” input defines what the column name is while the list at the start are the values. In the
second example, we also have an official “index” which creates labels for the rows of the data.

>>> x_1 = pd.Series( [1,2,3,4], name="v1")

>>> x_2 = pd.Series( [1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

• Printing the values yields the following:

>>> x_1
0 1
1 2
2 3
3 4
Name: v1, dtype: int64

>>> x_2
a 1
b 2
c 3
d 4
Name: v1, dtype: int64

• Note that x_1 has an index starting from zero and ending at 3 while the second has an index of a,
b, c, d.

• We can access the values and index of a series using the following attributes:

>>> x_2.values
[1 2 3 4]

>>> type(x_2.values)
<class 'numpy.ndarray'>

The returned object is an array, not a series! When we ask for the index, we return an “Index”
object, which is a type of Pandas data structure that is similar to a data frame.
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>>> x_1.index
RangeIndex(start=0, stop=4, step=1)

>>> x_2.index
Index(['a', 'b', 'c', 'd'], dtype='object')

• To get the size of a Series we can use the “size” or “shape” attributes. Shape is used more frequently
as it will return the shape in the case of multidimensional objects (size only returns the number of
objects).

>>> x_2.size
4

>>> x_2.shape
(4,)

The “shape” command returns a tuple.

• Not only can the series have a name (such as “v1” in our above examples), but the index can also
have a name. This is not something frequently encountered.

>>> x_2.name

>>> x_2.index.name = 'alpha'

>>> print(x_2)
alpha
a 1
b 2
c 3
d 4
Name: v1, dtype: int64

• Math can be done between Pandas objects:

>>> x_1 + x_1
0 2
1 4
2 6
3 8
Name: v1, dtype: int64

>>> x_2 + x_2
alpha
a 2
b 4
c 6
d 8
Name: v1, dtype: int64
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• Indexes are incredibly important because they strongly effect how operators work. In particular,
indexes in Pandas align data and when series are added together real effects occur. For example,
consider the following:

>>> ans = x_1 + x_2
v1

----
nan
nan
nan
nan
nan
[...]

If we look at what is returned it is another Pandas Series, with a single column which has the name
“v1” and eight values, all of them NaN.3 Why did this occur? Two reasons:

1. Since the indexes didn’t align, the addition operator assumed that the rows did not align and
thus the resulting dataset had 8 rows (4 + 4).

2. When adding objects in Pandas, anything added to NaN is equal to NaN.

• If we only want to display the first few data points in a series, we can use the “head” method which
can be used as follows:

>>> x_2.head(2)
alpha
a 1
b 2
Name: v1, dtype: int64

There is also a “tail” method which returns the last rows:

>>> x_2.tail(2)
alpha
c 3
d 4
Name: v1, dtype: int64

If no integer argument is provided the above methods return 5 values.

• If we want to find out information about what data types are in the series we can use the the dtypes
variable associated with the object:

>>> x_2.dtypes
int64

DataFrame

In this section we are going to use the Iowa Cars data (as in the previous SQL section). To use this data,
we load the information in a DataFrame, as the command below does:

3Interestingly, NaA is from the numpy library, so can be called as “nupy.NaN”
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>>> dfCars = pd.read_csv('<FILEPATH>/iowa_cars.tdf'
,sep='\t', engine='python', names=['year', 'countyname'

, 'motorvehicle' ,'vehiclecat', 'vehicletype'
, 'tonnage', 'registrations', 'annualfee'
, 'completecategory'])

Note that <FILEPATH> needs to be set to your local copy of file.

• A DataFrame is two dimensional data object (think of a table) and an associated index.

• head, tail, shape, size, index and dtypes are all available and behave as you’d expect:

>>> dfCars.head()
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2008 Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [...]

>>> dfCars.shape
(41202, 9)

>>> dfCars.size
370818

>>> dfCars.dtypes
year int64
countyname object
motorvehicle object
vehiclecat object
vehicletype object
tonnage object
registrations int64
annualfee float64
completecategory object
dtype: object

>>> dfCars.index
RangeIndex(start=0, stop=41202, step=1)

• Outside of dtypes, which describes the type of data in each column, the method describe()
creates a set of summary statistics for all columns:

>>> dfCars.describe()
year registrations annualfee

count 41202.000000 41202.000000 3.825800e+04
mean 2013.724504 1767.522135 2.122614e+05
std 4.697944 7417.077934 1.181381e+06
min 2005.000000 1.000000 0.000000e+00
25% 2010.000000 25.000000 3.020000e+03
50% 2014.000000 183.000000 2.464500e+04
75% 2018.000000 989.750000 9.136975e+04
max 2021.000000 218975.000000 4.964507e+07

• Note that addition with DataFrames and Series can behave unexpectedly. Consider the following
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examples:

>>> x_2 = pd.Series( [1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

>>> x_3 = pd.Series( [1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v2")

>>> d_2 = x_2.to_frame()

>>> d_3 = x_3.to_frame()

We now have two series (x_2 and x_3) which are the same except for the name (“v1” vs. “v2”) and
we have two DataFrames based off of those series. Let’s do some math:

>>> x_2 + x_3
a 2
b 4
c 6
d 8
dtype: int64

>>> d_2 + d_3
v1 v2

a NaN NaN
b NaN NaN
c NaN NaN
d NaN NaN

In the first example we can see that the columns are combined, even though their names are different,
but in the second we up with a DataFrame with two NaN columns. In other words, operations on a
Series ignore the name while in the DataFrame they do not!

3 Selecting Columns and Rows

• There are a ton of ways to select rows and columns using Pandas.

• When I first learned Pandas this was the most frustrating part of the experience. In order to minimize
the frustration, I recommend focusing on identifying exactly what data object you have and what
data object you want returned and then learning only one method for accessing data in that fashion.

• To specify rows and columns, from a DataFrame, we will use loc and iloc methods.4

• To specify objects, there are a number of different notational devices that can be used:

– For a single column we can use “dot” notation, with a column name after the dot, which returns
a series. Note that this only works if the column name is not a reserved word for a DataFrame.

>>> type( dfCars.tonnage )
<class 'pandas.core.series.Series'>

– Note that a “dot” can be used with any named object, such as an index:

4Another one, “ix”, was common but is now deprecated and will not be acceptable in this course.
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>>> x_2.b
2

– We can also specify a column using square brackets:

>>> type( dfCars['tonnage'] )
<class 'pandas.core.series.Series'>

– We can also use double square brackets:

>>> type( dfCars[['tonnage']] )
<class 'pandas.core.frame.DataFrame'>

Look at the difference between the previous two examples: the first returned a Series while the
second returned a DataFrame. We will find that this convention routinely reappears when using
pandas – supplying an itterable as a selector returns a DataFrame while an atomic value returns
a Series.

– We can also use loc, though to select all rows we need to prepend a colon:

>>> type( dfCars.loc[:, 'tonnage'] )
<class 'pandas.core.series.Series'>

>>> type( dfCars.loc[:, ['tonnage']] )
<class 'pandas.core.frame.DataFrame'>

– Keep in mind is that using loc is the preferred method for accessing data based on contents.
One issue that can occur when using alternative methods, such as only using the [[column]]
is that Pandas can interpret this as a row specification, rather than column name. No error is
returned when this occurs – instead an empty DataFrame is returned as no rows match that
definition.

– In this course you should always use loc when selecting rows and columns without
leveraging an index.

– If there is an index, we can specify rows by using loc with the index value:

>>> x_2 = pd.Series( [1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

>>> x_2['b']
2

– Strong recommendation: specify both rows and columns when selecting. The reason
for this is that when reading something like df.loc['value'] or df['value'] it’s difficult
to know if this is referring to a row with an index or a column with a name.

– We can use iloc, which is an integer based access for rows and columns, though this requires
knowing that tonnage is the 7th column:
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>>> type( dfCars.iloc[:, 7] )
<class 'pandas.core.series.Series'>

>>> type( dfCars.iloc[:, [7]] )
<class 'pandas.core.frame.DataFrame'>

– The iloc method takes any standard slice when it is used and can refer to both rows and
columns. For example, the code below selects the first 10 columns and rows 20 through 50.

>>> d_1 = dfCars.iloc[20:50, 0:10]

>>> type(d_1)
<class 'pandas.core.frame.DataFrame'>

>>> d_1.shape
(30, 9)

When looking at the above, some of the methods return DataFrames while others return series.
Keep in mind what is being returned! Many of the issues with Pandas that user’s
encounter is due to an unexpected return type!

• When you start with a Series there is no need to select columns because there is only a single column.

• Now that we know how to convert from a DataFrame to a Series, how do we go the other direction?
To do this we, we use the command to_frame on the series:

>>> type(dfCars.loc[:, 'year'])
<class 'pandas.core.series.Series'>

>>> type(dfCars.loc[:, 'year'].to_frame())
<class 'pandas.core.frame.DataFrame'>

Value Counts

• A really useful Series method is value_counts which returns another series containing the unique
values and the number of occurrences of that value within the series:

>>> dfCars.loc[:, 'tonnage'].value_counts()
tonnage
<10000 lbs 3401
6+ Tons Non-Special Usage 2970
6+ Tons Special Usage 2970
3 Tons 2747
>10000 lbs 2217
5 Tons 2089
4 Tons 1769
0 Tons 429
2 Tons 6
Name: count, dtype: int64
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• By default the value_counts method ignores missing values. If we want to include missing values,
the parameter dropna is set to False:

>>> dfCars.loc[:, 'tonnage'].value_counts(dropna=False)
tonnage
None 22604
<10000 lbs 3401
6+ Tons Non-Special Usage 2970
6+ Tons Special Usage 2970
3 Tons 2747
>10000 lbs 2217
5 Tons 2089
4 Tons 1769
0 Tons 429
2 Tons 6
Name: count, dtype: int64

Content-based selections

• Probably the most common operation done when analyzing data is selecting rows based on a criteria.
When doing this with loc we provide a boolean object of the same length as the DataFrame. For
example, let’s consider the following few lines of code:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[ (dfCarsC.loc[:, 'vehicletype'] == 'Semi Trailer') , ['countyname']]

>>> dfCarsC.head()
countyname
------------
Appanoose
Jefferson
Mahaska
Clay
Greene

The first line takes our original cars DataFrame and makes a “copy” of it. Why would we do this?
Two reasons:

1. Because we may possibly change our original data and, rather than reload it each time, we can
make a copy so that we can always restart.5

2. Get in the habit of making copies. As we will see later, unexpected issues with pandas can
arise because pandas often creates “views” of a DataFrame, rather than make a copy. It is not
uncommon for analysis to be incorrect because a user fails to account for views vs. copies.

The second line has three components:

1. (dfCarsC.loc [:, 'vehicletype'] == 'Semi Trailer') This creates an array of
True and False values based on the boolean condition. In other words, this returns a series of
41,202 items.

2. dfCarsC.loc[] The loc method, when used in this manner, only returns those rows which
the resulting condition evaluate True, so this is going to keep 1,683 rows.

5This is good practice when doing exploratory data analysis as it allows you to quickly restart if you do something incorrect.
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3. ['countyname'] This portion of the code keeps only the countyname.

Note the following:

– Pandas uses the double equal “==” to do comparison. Keep this in mind!

– Why did we have to re-assign the variable (dfCarsC = ) in the second line? We had to reassign
this because the loc command does not do in-place changes. If we didn’t do this re-assignment
dfCarsC would not have changed.

– This returns a DataFrame and not a Series since we selected the column with a list. If we,
instead, used 'countryname' not in a list form we would get a 1 by 1,683 Series instead of a
series of 1,683.

– Put all boolean objects in parenthesis when using Pandas!!! Just get used to it, evaluation
precedence is AND/OR above equality and inequality, meaning that things will go badly if you
don’t.

– This example has nested a number of different “things” together. One way to make sure that
your Pandas code is readable is by making sure not to overload too many operations into a
single line of code.

• Let’s do another one! How about we select all columns and only those rows with registrations larger
than 10,000? Unsurprisingly, basic row-by-row math operations also work fine.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 10000), :]

>>> dfCarsC
year countyname motorvehicle vehiclecat vehicletype tonnag [...]

------ ------------ -------------- ------------ --------------------- ------ [...]
2010 Johnson Yes Truck Truck 3 Tons [...]
2008 Cerro Gordo Yes Automobile Automobile [...]
2006 Wapello Yes Automobile Automobile [...]
2009 Black Hawk No Trailer Small Regular Trailer [...]
2012 Plymouth Yes Automobile Automobile [...]

[...]

• We can combine multiple conditions using “and” (&), “or” (|) and not (∼). For example, if we
want to get all data from Wright county with more than 1,200 registrations we can run the following
commands:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 1200)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :]

>>> dfCarsC.head()
year countyname motorvehicle vehiclecat vehicletype tonna [...]

------ ------------ -------------- ------------- --------------------- ----- [...]
2015 Wright Yes Truck Truck 3 Ton [...]
2005 Wright Yes Automobile Automobile [...]
2015 Wright Yes Multi-purpose Multi-purpose [...]
2008 Wright Yes Truck Truck 3 Ton [...]
2011 Wright No Trailer Small Regular Trailer [...]

Annoyingly these lines are getting longer and longer which makes them more and more difficult
to read. To get around this problem, we can add parenthesis around the expression. Adding a
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parenthesis allows us to arbitrarily put hard returns and tabs in the expression for organizational
purposes:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'registrations'] > 1200)

& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :])

>>> dfCarsC.head()
year countyname motorvehicle vehiclecat vehicletype tonna [...]

------ ------------ -------------- ------------- --------------------- ----- [...]
2015 Wright Yes Truck Truck 3 Ton [...]
2005 Wright Yes Automobile Automobile [...]
2015 Wright Yes Multi-purpose Multi-purpose [...]
2008 Wright Yes Truck Truck 3 Ton [...]
2011 Wright No Trailer Small Regular Trailer [...]

• We can also nest multiple layers of logic using parenthesis:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC.loc[(
((dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000))
|
((dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200))
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :])

which will return all rows from Wright county with between 1,200 and 3,000 registrations or 4,000
and 4,200 registrations.

• Keep in mind when writing these commands is that the result of what is inside loc needs to be a
list of true/false boolean expressions of the same length as the DataFrame.

• We can combine these operations to filter both on rows and columns:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC.loc[(
((dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000))
|
((dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200))
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), 'countyname'])

The above will return a Series only containing the countyname while the below will be a DataFrame
with countyname and the number of registrations:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(
(dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000)
|
(dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200)
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), ['countyname','registrations']]
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4 Column Types Conversion

• We occasionally need to switch types on columns. To do this we use the astype method. Consider
the following example below:

>>> dfCars.loc[:, 'registrations'].dtype
int64

>>> dfCars.loc[:, 'registrations'].astype(str).dtype
object

>>> dfCars.loc[:, 'registrations'].astype(float).dtype
float64

• The astype is most commonly used when converting between integers, floats and strings. While
there is some ability for the astype method to be used when dealing with dates and date related
objected it is not recommend and there are better, most consistent options available.

5 Dealing with NaN

• Consider the following code:

>>> dfCarsC = dfCars.copy()

>>> dfCars217 = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 217000)
,['year', 'registrations', 'annualfee']]

>>> print(dfCars217)
year registrations annualfee

2213 2016 217540 32035419.0
2372 2006 218883 NaN
12890 2015 218975 32058351.0
15971 2014 218211 31790136.0
21352 2005 218235 NaN
25896 2008 217073 24160802.0

We can see that in this DataFrame we have encountered a number of NaN values which is how missing
values are identified in Pandas. To locate these types of values we do not use equality operators, but
instead the Series method isna as shown below:
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>>> dfCars217.loc[:, 'annualfee'].isna()
2213 False
2372 True
12890 False
15971 False
21352 True
25896 False
Name: annualfee, dtype: bool

>>> dfCars217.loc[:, 'annualfee'] > 1
2213 True
2372 False
12890 True
15971 True
21352 False
25896 True
Name: annualfee, dtype: bool

>>> dfCars217.loc[:, 'annualfee'] < 1
2213 False
2372 False
12890 False
15971 False
21352 False
25896 False
Name: annualfee, dtype: bool

• isna can also be applied to entire DataFrames:

>>> dfCars.isna()
year countyname motorvehicle vehiclecat vehicletype tonnage r [...]

------ ------------ -------------- ------------ ------------- --------- --- [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 0 [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 0 [...]

[...]

As with SQL, NaN values evaluate false when given mathematical comparisons. In the example
above the NaN values were false for both less-than and greater-than one.

• To identify rows which are not NaN we can use a “not” operator in the following manner:

>>> dfCars217.loc[ ˜(dfCars217.loc[:, 'annualfee'].isna()), :]
year registrations annualfee

2213 2016 217540 32035419.0
12890 2015 218975 32058351.0
15971 2014 218211 31790136.0
25896 2008 217073 24160802.0

• There is no NaN value for integers. Any operation on an integer column which generates a NaN
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will automatically turn it into a float.

>>> x_1
0 1
1 2
2 3
3 4
Name: v1, dtype: int64

>>> x_1.dtypes
int64

>>> x_1[3] = np.nan

>>> print(x_1)
0 1.0
1 2.0
2 3.0
3 NaN
Name: v1, dtype: float64

>>> x_1.dtypes

• For NaN values we can use fillna in order to replace those values with another:

>>> dfCars.loc[:, 'countyname'].fillna('No County')

fillna can also be used with two columns.

>>> dfCars.loc[:, 'tonnage'].fillna(dfCars.loc[:, 'vehiclecat'])
tonnage
---------
Bus
Moped
3 Tons
Trailer
3 Tons
[...]

6 Choosing the largest and smallest values

• In the next module we will talk about sorting DataFrames, but for now we are going to cover how
to return only certain rows of a DataFrame based on their order. Aay that we want to return the
largest annualfee value in Scott county. To do this we use the nlargest method which takes two
input variables: the number to return and the series to sort by.
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>>> dfCarsC = dfCars.copy()

>>> (dfCarsC.loc[(dfCarsC.loc[:, 'countyname'] == 'Scott'), :]
.nlargest(1, 'annualfee').loc[:, 'annualfee'])

33497 19235858.0
Name: annualfee, dtype: float64

We can do the same thing with smallest values:

>>> dfCarsC = dfCars.copy()

>>> (dfCarsC.loc[(dfCarsC.loc[:, 'countyname'] == 'Scott'), :]
.nsmallest(1, 'annualfee').loc[:, 'annualfee'])

2595 0.0
Name: annualfee, dtype: float64

Two important features of the above:

1. The column 'annualfee' has NaN values in it, but those values were ignored in both the
smallest and largest operator.

2. We were able to append .loc[:, 'annualfee'] to the end of the statement in both cases
after the largest/smallest method. How could we do that? Once again, it has to do with
understanding what is being returned. In this case, the method returns a DataFrame which we
can then apply any of our selection methods.

7 Manipulating Data & Method Chaining

• So far we have only taken data, filtered rows and selected columns. In this section we are going to
do some basic manipulation of the underlying DataFrame.

• Let’s start by creating a column, which we can do by using some of the previous selection operators,
but this time with a new name:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[:, 'newcol1'] = 5

>>> dfCarsC.loc[:, 'newcol1'].head()
0 5
1 5
2 5
3 5
4 5
Name: newcol1, dtype: int64

• Mathematical operations work on a row-by-row basis:
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>>> dfCarsC.loc[:, 'newcol2'] = dfCarsC.loc[:, 'registrations'] + 5

>>> dfCarsC.loc[:, ['registrations', 'newcol2']].head()
registrations newcol2

0 5 10
1 198 203
2 5020 5025
3 366 371
4 2507 2512

• Creating columns based on other columns (of the same shape) is also straightforward:

>>> dfCarsC.loc[:, 'newcol3'] = dfCarsC.loc[ :, 'registrations'] / dfCarsC.loc[:, 'annualfee']

>>> dfCarsC.loc[:, 'newcol4'] = dfCarsC.loc[:, 'registrations'] * dfCarsC.loc[:, 'annualfee']

>>> dfCarsC.loc[˜(dfCarsC.annualfee.isna())
,['registrations', 'newcol3', 'newcol4', 'annualfee']].head()

registrations newcol3 newcol4 annualfee
0 5 0.007353 3.400000e+03 680.0
1 198 0.142857 2.744280e+05 1386.0
2 5020 0.016201 1.555457e+09 309852.0
3 366 0.019877 6.739158e+06 18413.0
4 2507 0.018752 3.351608e+08 133690.0

• Lets take a look at that special case where we divide by zero:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCars.loc[:, 'annualfee'] == 0), ['annualfee', 'registrations']].head()

>>> dfCarsC.loc[:, 'registrations'] / dfCarsC.loc[:, 'annualfee']
2365 inf
2595 inf
2819 inf
2842 inf
3087 inf
dtype: float64

We can see that no error was generated but a new value np.inf was used. Unlike missing values,
standard operators can be used on this special value:

>>> np.NaN == np.NaN
False

>>> np.inf == np.inf
True

>>> np.inf > 1
True

>>> np.inf < 1
False

• The other way to create a new column is by using the assign method. Using the assign method,
rather than the loc syntax above allows us to “method chain”, because it returns a DataFrame
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which has all DataFrame methods available to it:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.assign(newcol3=dfCarsC.loc[:, 'registrations']/dfCarsC.loc[:, 'annualfee']))

In the example above we use the assign operator to create a new column which is the registrations
divided by the annual fee. This is exactly the same result as previously, but this time we applied a
more functional method to complete this task.

• The assign method also works when setting static values, such as in the following example, which
creates a column of zeros. It can also be used with multiple column assignments, as shown below,
by separating them with commas.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.assign(newcol3=dfCarsC.loc[:, 'registrations']/dfCarsC.loc[:, 'annualfee'], newcol4 = 0)
.nlargest(5, 'newcol3')
)

• In general we will try to use method chaining methods to manipulate our data because it leads to
much more readable code.

Dropping, Renaming and Inplace methods

• We can also drop, or remove, columns from a DataFrame using the drop method on a DataFrame.
There are two common ways of using this method, both shown below:

>>> dfCarsC = (dfCars
.copy()
.assign(newcol1 = 1, newcol2=2, newcol3=3, newcol4=4)
)

>>> dfCarsC = dfCarsC.drop(['newcol1', 'newcol2'], axis=1)

>>> dfCarsC = dfCarsC.drop(columns=['newcol3', 'newcol4'])

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

The first is to provide a list and se the axis option to 1 lets Pandas know that we are dropping
columns and not indexed rows. The axis variable is used to specify if an operation should be done
along rows or columns.6

The second way of using this method is by specifying the named parameter columns and providing
a list of strings.

The drop method returns a DataFrame with the chosen objects removed and does not modify the

6While it seems obvious that we are trying to drop columns in the example, it’s just as possible that we have an index and
we could be trying to drop rows instead. This variable allows us to be certain which we are doing.
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current DataFrame. If we wish to change the current DataFrame (and return None) then we use the
inplace option to the method:

>>> dfCarsC = (dfCars
.copy()
.assign(newcol1 = 1, newcol2=2, newcol3=3, newcol4=4)
)

>>> dfCarsC.drop(['newcol1', 'newcol2'], axis=1, inplace=True)

>>> dfCarsC.drop(columns=['newcol3', 'newcol4'], inplace=True)

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

• DataFrame methods commonly have an inplace option, which can be helpful to use and easier to
read. Be wary however, as it is easy to run into “weird” errors when mixing both inplace and not
inplace commands. In my experience you should either always use inplace or never. Mixing
them causes problems.

• There are two common ways to rename columns. We can use the rename method with the column
parameter set or we can reassign the labels by setting the columns attribute on the DataFrame
object.

• The second, setting the columns attribute, works because the attribute itself is accessible and while
it is shown as an index type, it can be set by using any itterable object, such as a list.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

• The columns attribute itself is also an index type, but it can be overwritten with any list type to
rename the columns. For example:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.columns = ['year2', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',
'tonnage', 'registrations', 'annualfee', 'completecategory']

>>> dfCarsC.loc[:, 'year2'].head()
year2

-------
2008
2011
2012
2015
2016

The column “year” was renamed by changing the name in the list. The object associated with
columns is not mutable and thus must be overwritten and not modified.

243



D
RA
FT

• The other way to rename a column is via the rename method. rename takes a parameter named
column which we set equal to a dictionary of the form {old_column : new_column}

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.rename(columns={'tonnage' : 'tonnage2'})

One truly annoying thing about the Pandas rename function is that if you forget the columns=
parameter, then no error is returned and no column is renamed! In this situation, the command
looks for an index value to rename and doesn’t find it, so no rename occurs. In other words, the
columns parameter works the same way that the axis parameter did in other commands.

Like many of the other methods, this one also has an “inplace” operator, so the following is equivalent
to the previous operation:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.rename(columns={'tonnage' : 'tonnage2'}, inplace=True)

• We can use dictionary notation to do multiple renames at the same time using this method:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.rename(columns={'year' : 'year2', 'tonnage' : 'tonnage2'})

8 Indexes: Creating and Dropping

• So far our discussion has avoided any mention of how indexes are used in Pandas. In this section we
discuss some of the basic use of indexes on the row-level.

• The most common type of index is a RangeIndex, which is a simple integer increment. This is the
default index set upon loading a dataset:

>>> dfCars.index
RangeIndex(start=0, stop=41202, step=1)

• To convert a column into an index we use the set_index method which takes in a list of columns
and creates an index based upon it. For example, the following returns a dataset with an index
associated with the “countyname” (which has many repeating values):

>>> dfCarsC = dfCars.set_index('countyname')

As with many statements in pandas you can have the effect occur in place, rather than returning a
new value:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.set_index('countyname', inplace=True)

• Index values need not be unique in pandas!
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• Indexes can also be multi-level (or hierarchal). We will talk more about this in 4. To add a multi-level
index to a DataFrame we supply a list to the set_index() method:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.set_index(['countyname', 'year'])

>>> ans = dfCarsC.head()
motorvehicle vehiclecat vehicletype tonnage r [...]

------------------- -------------- ------------ -------------- --------- --- [...]
('Ida', 2008) Yes Bus Bus [...]
('Jasper', 2011) Yes Moped Moped [...]
('Harrison', 2012) Yes Truck Truck 3 Tons [...]
('Palo Alto', 2015) No Trailer Travel Trailer [...]
('Adair', 2016) Yes Truck Truck 3 Tons [...]

• Multi-level index are represented (when printing) as tuples. We also use tuple-like notation to access
them, as we will discuss later.

• We can also remove the index (in that we return it to a column value) by using the reset_index
method:

>>> dfCars.reset_index()

When using this method, the column name of the former index is equal to the name of the index
(e.g. what can be found in .index.name on the DataFrame.)

• If we want to reset the index and then not have the index returned as a column, we use the drop
parameter:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.set_index(['countyname', 'year'])
.reset_index(drop=True)
)

>>> dfCarsC.dtypes
motorvehicle object
vehiclecat object
vehicletype object
tonnage object
registrations int64
annualfee float64
completecategory object
dtype: object

In the above example, the original two columns (countyname and year) which we turned into the
index no longer appear.

• One caveat is that even if you use reset_index, this doesn’t create a DataFrame without an index.
Instead, a standard range index will be created with each row having an index equal to the current
row number.

• Finally, we can assign index values by simply assigning them using an object of equal shape.
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>>> t = dfCars.head()

>>> t.index = np.arange(0, 2*t.shape[0],2)

>>> t.index
Index([0, 2, 4, 6, 8], dtype='int64')

9 Views and Copies

• The second most common problem that people have (after not knowing what is being returned) is
failing to be explicit about creating copies of the data and instead operate on a view.

• What do I mean by “view” vs. “copy”? A “view”, sometimes called a “shallow copy” is when
we create an object based on another object by creating a pointer to a memory space, rather than
creating an explicit copy of that data in memory.

• Why would we do this? Namely speed and memory. A “shallow copy”, sometimes called a “zero
copy” is much, much faster and places less of a burden on the CPU.

• The downside of this is that it places a burden on the user to understand when a copy or a view is
created. Unfortunately in pandas, those rules are not as explicit as they should be and it is common
for “weird” behavior to occur because of this.

• We are going to look at five examples of how this behavior can arise.

1. Simple View: In the following example we can see that pandas has created a view of the
underlying object.

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df

>>> df3 = df.iloc[0:1, 0:1]

>>> df.loc[:, 'a'] = 5

>>> print(df2)
a b

0 5 0
1 5 1

>>> print(df3)
a

0 5

2. Simple Copy: In the following example we can see that a copy has been created. We use the
.copy() method in order to explicitly make a copy of the DataFrame.

246



D
RA
FT

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df.copy()

>>> df.loc[:, 'a'] = 5

>>> print(df2)
a b

0 0 0
1 1 1

3. Wut? (pt. 1):

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df

>>> df3 = df.iloc[0:1, 0:1]

>>> df.loc[:, 'a'] = 5.1

>>> print(df2)
a b

0 5.1 0
1 5.1 1

>>> print(df3)
a

0 0

4. Wut? (pt. 2):
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5. Wut? (pt.3): In this example you will get a SettingWithCopyWarning. This is called
“index chaining” and is one of the reasons that we require use loc in this course. It is way too
easy to end up in situations where this occurs if you use non-loc based access methods.
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>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> df[df.a == 0]['b'] = 100

>>> print(df)
a b

0 0 0
1 1 1

>>> df.loc[ (df.loc[:, 'a'] == 0), 'b']= 100

>>> print(df)
a b

0 0 100
1 1 1

• What have we learned from the above? You have to be careful with views vs. copies. Assuming one
or the other can lead to significant problems and unexpected behavior.

• Use loc as a way to access data. It’s more likely to put you on a path toward a copy.

• The method _is_view should return a boolean on if the object is a view or not. I’ve had varying
degrees of luck with it and don’t recommend relying on it.

• Use copy frequently when you are not intentionally maintaining a view – and maybe most impor-
tantly, never assume what you are working on.
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