
D
RA
FT

Chapter 15

More Manipulations and Types

251

D
RA
FT

Contents

1 Sorting DataFrames . 253

2 Dealing with Duplicates . 256

3 Using Type specific functions . 258

3.1 Dates . 258

3.2 Strings . 260

4 CASE style statements and the “isin” operator . 264

5 Regex Pattern Matching . 265

252

D
RA
FT

1 Sorting DataFrames

• If we want to sort a DataFrame or Series then we use the sort_values method, which returns the
same object with the values sorted.

• This method returns a DataFrame or Series in-which the data is sorted.

• If you are sorting based on a single column you can pass the column name in directly:

>>> dfCars.sort_values('annualfee')

If you wish to sort based on multiple columns, you pass them in as a list:

>>> dfCars.sort_values(['countyname', 'annualfee'])

• The default sort order is ascending (lowest to highest), but we can change that using the “ascending”
parameter. This needs to be a boolean (or list of booleans) with a length equal to the number of
columns being sorted. Two examples below:

>>> dfCars.sort_values(['countyname', 'annualfee'], ascending = [False, True])

>>> dfCars.sort_values('countyname', ascending = False)

• The above two queries do not modify the original DataFrame, but only return a sorted version. If
we wish to modify the original DataFrame we have to either use another assignment operator or use
the inplace argument:

253

D
RA
FT

>>> d_1 = dfCars.loc[:,['annualfee', 'registrations']]

>>> d_1.head()
annualfee registrations

0 680.0 5
1 1386.0 198
2 309852.0 5020
3 18413.0 366
4 133690.0 2507

>>> d_1.sort_values('annualfee').head()
annualfee registrations

37907 0.0 1
34713 0.0 1
4454 0.0 1
38246 0.0 3
30700 0.0 1

>>> d_1.head()
annualfee registrations

0 680.0 5
1 1386.0 198
2 309852.0 5020
3 18413.0 366
4 133690.0 2507

>>> d_1.sort_values('annualfee', inplace=True)

>>> d_1.head()
annualfee registrations

37907 0.0 1
34713 0.0 1
4454 0.0 1
38246 0.0 3
30700 0.0 1

• Before proceeding, take a look at the index numbers on the rows above. The first d_1.head()
call returns an index of 0 through 4. The next two, however, return an index of the numbers that
mapped to the original RangeIndex row location (37907, 34713, ...). This means that the index on
the DataFrame returned is no longer in order. If we wish to reorder the index so that it matches the
actual row number we will need to change the index, as well will see below.

• Note that the above has important implications for how operations work in pandas. Specifically,
operations follow the index – not the row order! This is true even if we do not explicitly specify an
index.

254

D
RA
FT

>>> d_1 = pd.DataFrame([1,2,3], columns=['a'])

>>> d_2 = d_1.sort_values(['a'], ascending=False).copy()

>>> d_1
a

1
2
3

>>> d_2
a

3
2
1

>>> d_1 + d_2
a

2
4
6

The important feature of pandas to keep in mind is that all operations are index-based, unless
specified otherwise.

• In my experience it is most common to want to sort by the internal values of the data which are not
an index. If, however, we wish to sort based on the index values, then we can use the sort_index
command which will return a DataFrame or Series sorted by the index:

>>> d_1 = pd.DataFrame({'A' : [1,2,3], 'B' : [3,2,1]})

>>> d_1 = d_1.sort_values(['B'], ascending = True)

>>> d_1
A B

--- ---
3 1
2 2
1 3

>>> d_1.sort_index()
A B

--- ---
1 3
2 2
3 1

You can see that the DataFrame which was returned by the sort_index has now been sorted along

255

D
RA
FT

that dimension. This command also has an inplace argument.

• How are Nulls handled? Unlike SQL which treats Nulls as the largest value and last alphabetically,
pandas treats Nulls as separate condition. Specifically, Nulls are always put last. If you want to
change this behavior there is a named argument na_position which can be set to either first
or last which determines the position of Nulls in the sort order.

>>> dfCars.sort_values(['annualfee'], na_position='first').loc[:, 'annualfee'].head()
11 NaN
14 NaN
22 NaN
23 NaN
44 NaN
Name: annualfee, dtype: float64

>>> dfCars.sort_values(['annualfee'], na_position='last').loc[:, 'annualfee'].head()
37907 0.0
34713 0.0
4454 0.0
38246 0.0
30700 0.0
Name: annualfee, dtype: float64

2 Dealing with Duplicates

• A frequent work flow when duplicate values occur within a dataset is removing them. Pandas provides
a few useful operations in order to do this: unique, drop_duplicates and duplicated.

• The first of these, unique works on a Series and returns the unique values within that Series:

>>> dfCars.loc[:, 'vehiclecat'].unique()
['Bus' 'Moped' 'Truck' 'Trailer' 'Multi-purpose' 'Motor Home' 'Automobile'
'Motorcycle' 'Autocycle']

This operation returns an array, not a Series, so be careful!

• The second operation, drop_duplicates, works on both Series and DataFrames and returns the
same object that it is called upon. For example, the following operation does the same thing as the
previous code snippet, but this time returns a Series:

>>> dfCars.loc[:, 'vehiclecat'].drop_duplicates()
0 Bus
1 Moped
2 Truck
3 Trailer
13 Multi-purpose
22 Motor Home
50 Automobile
81 Motorcycle
411 Autocycle
Name: vehiclecat, dtype: object

• This operation can also be done on entire DataFrames:

256

D
RA
FT

>>> dfCars.loc[:, ['vehiclecat', 'year']].drop_duplicates().head()
vehiclecat year

0 Bus 2008
1 Moped 2011
2 Truck 2012
3 Trailer 2015
4 Truck 2016

This example returns a DataFrame with only 142 rows, which contains the unique values of the two
specified columns. As in SQL, this does not create data. If there is combination of data points which
is not present within the original data that combination will not appear in the result.

• One common operation we want to handle is removing duplicates from a DataFrame based on a
subset of the columns in the DataFrame. We can do this using the drop_duplicates method with
the subsetargument set to a list of the columns we want to return as unique.

• Dropping duplicates in this matter raises the issue of which, non-de-duplicated rows do we want to
keep? Specifically consider the following example below:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'countyname'] == 'Polk')

& (dfCarsC.loc[:, 'completecategory'] == 'Motor Home - A')
, :]

.sort_values('year')
)

>>> # SPOT

>>> dfCarsC.drop_duplicates(subset='countyname')
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2005 Polk Yes Motor Home Motor Home - A [...]

>>> dfCarsC = dfCarsC.sort_values('year', ascending=False)

>>> dfCarsC.drop_duplicates(subset='countyname')
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2021 Polk Yes Motor Home Motor Home - A [...]

• We can see that in the above example we use the drop_duplicates method and, in the first
example it returns the row from 2005 while the second returns the row from 2021. If we were doing
an analysis where we wanted the result of this command than we have cognizant of the current row
order since this method, by default, keeps the first row that it encounters within that DataFrame.

• Looking at that example, consider the spot where there is a comment in the code above. If someone
later came and did something which switched the sort order in the DataFrame then the analysis
could be changed without registering an error – subsequent analysis would therefore be based on a
different DataFrame and return a different number.

• Because of this, I strongly recommend (nay, require), all drop_duplicates in code bases I oversee
to have their sort order fully specified with method chaining, such as in the below.

257

D
RA
FT

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'countyname'] == 'Polk')

& (dfCarsC.loc[:, 'completecategory'] == 'Motor Home - A')
, :]

.sort_values('year')
)

>>> (dfCarsC
.sort_values(['countyname', 'year'], ascending=False)
.drop_duplicates(subset=['countyname'], keep='first')
)

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- --------- -- [...]

2021 Polk Yes Motor Home Motor Home - A [...]

• In the above I have also added the keep argument to the command. I do this because, while this is
the default behavior, I can’t (and don’t expect) others to remember what is the default. Putting it
in works as a reminder.

• A final useful command is duplicated which returns a boolean series which identifies if a particular
row is a duplicate or not. Just like the drop_duplicates method it can take both a subset of
columns as well as a keep named argument to guide which rows are deemed a duplicate or not.

3 Using Type specific functions

• As can be expected with any data focused library, Pandas has a large number of useful type specific
functions. Type specific functions are functions which are only allowed to operate on data types
which have a particular type. To reach these methods in Pandas we use a set of Series methods as
accessor attributes.

• In this section we will consider two sets of type specific functions: those that work on Dates and
those that work on Strings.

3.1 Dates

• Date and date related objects are built from the standard Python datatime library.

• There are two commonly used data types:

1. The datetime64 type which represents a discrete date and time.

2. The timedelta type which represents an interval.

• There are four common operations we want to do with dates:

1. Convert string to datetime: The two most common ways of doing this:

(a) Upon Loading: When the data is being loaded, there are ways to tell Pandas that a par-
ticular column is a date. When loading CSV files, the read_csv method has an argument
called parse_dates which accepts a list of columns which are converted upon loading.
Note that this method tries to infer the date from the data present and frequently fails.

(b) Via to_datetime: Using this method entails either replacing a column or assigning a
new column using this built-in Pandas method:

258

D
RA
FT

>>> dfMTA.loc[:, 'mtadt'] = pd.to_datetime(dfMTA.loc[:, 'mtadt'], format='%m/%d/%Y')

Both the to_datetime method as well as a number of other date methods require the user
to specify the explicit format of the date string to be processed using the strftime/strptime
formatting system. This system is a common method of defining the date type in data processing
and is based upon an older unix/C standard.1 The function strftime function takes a date object
and returns a string while the strptime takes a string and returns a date object.

The format uses a set of conversion characters, which begin with a % to represent parts of a
date. These conversion characters and then combined with ordinary characters (everything else)
to combine to specify the final date format. For example, consider the following specification:
%Y-%m-%d which would represent the year, month and date, separated by dashes. You can see
further examples in Table 15.1 below.

Syntax Example Description

%Y-%m-%d 2022-02-02 Four-digit year and zero padded
month and day

%m/%d/%Y %H:%M:%S 03/02/2023 14:55:22 M/D/Y (all zero padded) and
hour/min/sec with a 24 hr clock

Table 15.1: strftime examples

The Python documentation has a full list of acceptable codes. That documentation can be found
here: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

2. Extract a date component: Once you have a datetime object, you can use the db accessor
to extract a portion of the date from it. In this case we use the dt followed by what we are
trying to extract:

>>> dfMTA.loc[:, 'mtadt'].dt.year.head()
0 2015
1 2015
2 2015
3 2015
4 2015
Name: mtadt, dtype: int32

Options for this include things like year, month, day and dayofweek.

3. Convert datetime to string: As discussed above we can use the strftime style formatting
with the dt accessor function. For example:

>>> dfMTA.loc[:, 'mtadt'].dt.strftime('%Y-%m').head()
0 2015-11
1 2015-11
2 2015-11
3 2015-11
4 2015-11
Name: mtadt, dtype: object

1You can find a link to the man page here: https://man7.org/linux/man-pages/man3/strftime.3.html

259

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes
https://man7.org/linux/man-pages/man3/strftime.3.html

D
RA
FT

4. Basic date math and comparisons: To add and subtract times we use a Timedelta object,
which represents a length of time to be applied.

>>> (dfMTA.loc[:, 'mtadt'] + pd.Timedelta(days=2)).head()
0 2015-11-30
1 2015-11-30
2 2015-11-30
3 2015-11-30
4 2015-11-30
Name: mtadt, dtype: datetime64[ns]

Timedelta objects allow us to consistently do math on datetime objects, so use these rather
than relying on other methods. Comparison operators (=, >,<) work as expected:

>>> dfMTA.loc[(dfMTA.loc[:, 'mtadt'] > '2015-01-01')].head()
plaza mtadt hr direction vehiclesez vehiclescash

0 1 2015-11-28 0 I 477 205
1 1 2015-11-28 0 O 486 252
2 1 2015-11-28 1 I 350 171
3 1 2015-11-28 1 O 307 182
4 1 2015-11-28 2 I 280 133

• Unlike in SQL there is no obvious date_trunc method. While one might expect the floor
command to do this, there is an open issue on pandas:

Pandas is broken: https://github.com/pandas-dev/pandas/issues/15303#

• The current date and time can be found with the following commands:

>>> pd.to_datetime('now')
2023-08-14 20:50:19.553795

>>> pd.to_datetime('today')
2023-08-14 20:50:19.553917

These commands return the current date and time at the time that the code is run. This is useful
when trying to write code which would analyze a rolling time frame, such as “the last 90 days.”

3.2 Strings

• To reference string functions in Pandas, we call the str accessor on a column and then reference the
string function.

• These methods exclude NaN values and usually match standard string methods in Python and Excel.
Table 15.2 contains a list of some useful functions that can be found in Pandas.

• Consider the following example, which uppercases the countyname:

260

https://github.com/pandas-dev/pandas/issues/15303#

D
RA
FT

Name Description

lower / upper Lower or Upper Cases a string
len Returns the length of the string
strip Removes white spaces and new line characters from a string
split Splits a string into a list from a given pattern
startswith / endswith Returns a boolean based on if the string follows the pattern
contains Returns a boolean if the string contains a pattern

Table 15.2: String Functions in Pandas

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[:, 'UC'] = dfCarsC.loc[:, 'countyname'].str.upper()

>>> dfCarsC.loc[:, ['countyname', 'UC']].head()
countyname UC

0 Ida IDA
1 Jasper JASPER
2 Harrison HARRISON
3 Palo Alto PALO ALTO
4 Adair ADAIR

In this example, the countyname is referenced as a series and then the str accessor is called. After
the str accessor is called then the string function upper is called. This returns the uppercased
value.

• If we want to refer to specific portions of a string (such as the first or last character), we use the str
accessor and then apply our normal slicing operations afterwards. For example, to get the first two
characters of a string we could do the following:

>>> dfCars.loc[:, 'countyname'].str[0:2].head()
0 Id
1 Ja
2 Ha
3 Pa
4 Ad
Name: countyname, dtype: object

As with the rest of Python, strings start with zero and a slice is inclusive on the left side, but not on
the right. The object returned is another Series.

• To concat strings together we use the cat method within the str accessor or a + :

261

D
RA
FT

>>> dfCars.loc[:, 'countyname'].str.cat(dfCars.loc[:, 'countyname'])
0 IdaIda
1 JasperJasper
2 HarrisonHarrison
3 Palo AltoPalo Alto
4 AdairAdair

...
41197 MarionMarion
41198 WorthWorth
41199 WinnebagoWinnebago
41200 DelawareDelaware
41201 HumboldtHumboldt
Name: countyname, Length: 41202, dtype: object

>>> dfCars.loc[:, 'countyname'] + dfCars.loc[:, 'countyname']
0 IdaIda
1 JasperJasper
2 HarrisonHarrison
3 Palo AltoPalo Alto
4 AdairAdair

...
41197 MarionMarion
41198 WorthWorth
41199 WinnebagoWinnebago
41200 DelawareDelaware
41201 HumboldtHumboldt
Name: countyname, Length: 41202, dtype: object

• Using the split function provides us an interesting application of the object data type. Let’s look
at the top of the “vehicletype” column in the DataFrame:

>>> dfCars.loc[:, 'vehicletype'].head(10)
0 Bus
1 Moped
2 Truck
3 Travel Trailer
4 Truck
5 Truck
6 Truck
7 Truck
8 Moped
9 Truck
Name: vehicletype, dtype: object

As can be seen in the result, there are multiple different types of vehicles, some with one word and
some with multiple words. If we use the split method on this, we will create a list:

262

D
RA
FT

>>> dfCars.loc[:, 'vehicletype'].str.split(' ').head(10)
0 [Bus]
1 [Moped]
2 [Truck]
3 [Travel, Trailer]
4 [Truck]
5 [Truck]
6 [Truck]
7 [Truck]
8 [Moped]
9 [Truck]
Name: vehicletype, dtype: object

Each of the phrases in the original dataset has been turned into a list – and the lists do not have
the same number of items! Surprisingly, we can store this in the DataFrame itself and the series will
have type “object”, though the contents will be a list!

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.assign(newcol = dfCars.loc[:, 'vehicletype'].str.split(' '))

>>> dfCarsC.loc[:, 'newcol'].dtypes
object

>>> type(dfCarsC.loc[:, 'newcol'].iloc[0])
<class 'list'>

• Since the string functions themselves are accessible from any string series, they can be chained
together to generate more complex operations:

>>> dfCars.loc[:, 'countyname'].str.upper().str.startswith('A')
0 False
1 False
2 False
3 False
4 True

...
41197 False
41198 False
41199 False
41200 False
41201 False
Name: countyname, Length: 41202, dtype: bool

• We can also use them to locate information via the loc function. In the example below we added a
fillna command since there are some NaNs in the underlying data and Pandas doesn’t allow loc
indexing with NaN’s present!

263

D
RA
FT

>>> dfCars.loc[(dfCars.loc[:, 'tonnage'].str.contains('Tons')).fillna(False), :]
year countyname motorvehicle vehiclecat vehicletype tonnage r [...]

------ ------------ -------------- ------------ ------------- --------- --- [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2016 Adair Yes Truck Truck 3 Tons [...]
2016 Van Buren Yes Truck Truck 4 Tons [...]
2018 Story Yes Truck Truck 3 Tons [...]
2019 Cerro Gordo Yes Truck Truck 5 Tons [...]

[...]

Specifically, if we try the command above without the fillna present the result will be:

ValueError: cannot index with vector containing NA / NaN values

• Finally, the str accessory function returns a string, so we can use standard string slicing functions
to manipulate strings.

>>> dfCars.loc[:, 'countyname'].str[0:3].str.upper().head()
0 IDA
1 JAS
2 HAR
3 PAL
4 ADA
Name: countyname, dtype: object

4 CASE style statements and the “isin” operator

• To mimic SQL style CASE statements, the loc operator can be used.

• For example, lets say that we wish to create a column (“regsize”) which is equal to ‘Small’, ‘Medium’
or ‘Large’, depending on if the number of registrations is less than 200, between 200 and 500 and
more than 500. One way to accomplishing this:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] < 200), 'regsize'] = 'Small'

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] >= 200)
& (dfCarsC.loc[:, 'registrations'] < 500), 'regsize'] = 'Medium'

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] >= 500), 'regsize'] = 'Large'

>>> dfCarsC.loc[:, ['registrations', 'regsize']].head()
registrations regsize

0 5 Small
1 198 Small
2 5020 Large
3 366 Medium
4 2507 Large

• The loc method is a bit overloaded within Pandas in the sense that it can be used in a variety of
different ways that can be at times confusing. In this case we are using the method to not only isolate

264

D
RA
FT

rows and columns, but also to assign them values.2

• The series object has an isin method which behaves similarly to the “in” clause in SQL. Provided
a list of items to match it will return a True/False value depending on if the value is in it or not.
If we want to isolate all the data relating to both Adair and Wright counties then we use it in the
following manner:

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].isin(['Adair', 'Wright'])), 'countyname']
.value_counts())

countyname
Adair 410
Wright 410
Name: count, dtype: int64

A caveat about isin is that will return False when applied to a NaN.

>>> (dfCars
.loc[(dfCars.loc[:, 'tonnage'].isna()), 'tonnage']
.isin(['list', 'of', 'values'])
.value_counts())
tonnage
False 22604
Name: count, dtype: int64

5 Regex Pattern Matching

• Pandas has a number of built-in, useful string matching methods, such as startswith, endswith
and contains, which we mentioned previously.

• For more complex matches, pandas allows you to use what is called Regular Expression (sometimes
called regex).

• The most common way of doing this is by using the accessor str and then applying a regex enabled
method, such as findall or match, though there are others.

• Let’s do a simple example:

>>> dfCars.countyname.str.findall('Adair').head()
0 []
1 []
2 []
3 []
4 [Adair]
Name: countyname, dtype: object

You can see that the object returned a list for row containing the matching substrings. Lets do
something a bit more complex:

2We will learn more about the issues that this arrises when we get to Section 9

265

D
RA
FT

>>> dfCars.countyname.str.upper().str.findall('A').head()
0 [A]
1 [A]
2 [A]
3 [A, A]
4 [A, A]
Name: countyname, dtype: object

Once again, we can see that the all matching strings were returned, which in this case would be two
of the letter “A”.

• Regex is incredibly powerful and incredibly complex. We can do things like case insensitive matching:

>>> dfCars.countyname.str.findall('(?i)a').head()
0 [a]
1 [a]
2 [a]
3 [a, A]
4 [A, a]
Name: countyname, dtype: object

• The following will identify everything that starts with an upper case “A”:

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].str.match('ˆA.*')), 'countyname']
.value_counts()
)

countyname
Adair 410
Appanoose 407
Allamakee 403
Audubon 393
Adams 382
Name: count, dtype: int64

• An even more complex example is to get everything that starts with “A” and ends with “s”, which
will find “Adams”, but not the rest of the counties above.

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].str.match('ˆA.*s$')), 'countyname']
.value_counts()
)

countyname
Adams 382
Name: count, dtype: int64

• It makes sense to spend some time (not a lot) reading over some regex and you should use any
opportunity on the homework to play around with it. I’m never going to ask you anything more than
the simple, built-in, stuff on an exam.

• While regex is incredibly powerful for pattern matching purposes, its Achilles heel is that it isn’t a

266

D
RA
FT

strong standard. It is actually a collection of different standards that have significant overlap. The
implication is that it is entirely possible that code that works with “Regex” in one place will not
work in another.

267

D
RA
FT

268

