
D
RA
FT

Chapter 16

Aggregations

269

D
RA
FT

Contents

1 Introduction to the MTA dataset . 271

2 Simple Aggregations . 271

3 GroupBy Objects . 274

4 Advanced Index / Multiindex . 279

5 If not indexes... 285

6 Indexing with aggregations, a big Gotcha . 286

270

D
RA
FT

1 Introduction to the MTA dataset

• In this section we will using the NY MTA dataset, as we did in the section XX. In order to load this
dataset, use the following command:

>>> dfMTA = pd.read_csv('<FILEPATH>/MTA_Hourly.tdf'
, sep='\t', engine='python', names=['plaza', 'mtadt'

, 'hr', 'direction', 'vehiclesez', 'vehiclescash'])

>>> dfMTA.mtadt = pd.to_datetime(dfMTA.mtadt)

where <FILEPATH> needs to be changed to the appropriate local location.

2 Simple Aggregations

• Pandas provides a number of ways to do simple aggregations – which we define as those over the
entire dataset. The table below shows the available aggregation functions:

Name Description

count Number of non-NaN values
sum Sum of non-NaN values
mean Average of non-NaN values
size Number of rows
median Median of non-NaN values
quantitle(X) X-th quantitle of non-NaN values
std Standard Deviation
var Variance
min Min of non-NaN values
max Max of non-NaN values
prod Product of non-NaN values
first First non-NaN value
last Last non-NaN value
nunique Number of unique values

• For the purposes of this course, we will only focus on those that match the SQL ones: min, max,
mean, sum, count and nunique (essentially count distinct).1

• There are five aggregation methods, which we will term either “Simplifying” or “Equal” depending
on what gets returned relative to the original object they are applied to:

1. Using an aggregation function, such as sum() (Simplifying).

2. Using the agg command, with a string (Simplifying).

3. Using the agg command, with a list of operators (Equal).

4. Using the agg command, with a dictionary of single strings

– On a DataFrame (Simplifying).

– On a Series (Equal).

1For a complete list, check out the list of “Computations / Descriptive Stats” in the pandas documentation, which can be
found here: http://pandas.pydata.org/pandas-docs/stable/reference/frame.html

271

http://pandas.pydata.org/pandas-docs/stable/reference/frame.html

D
RA
FT

5. Using the agg command, with a dictionary of lists. Cannot be done on Series. (Equal).

All of the methods above, save the last one, can be applied to both a DataFrame or a Series. The
most important thing to remember is that the object you get out from the operation is dependent
on both the input type and the operation itself.

• The operations above which say simplifying return a “lower” complexity object then the original
one while those that say equal return an object of “equal” complexity. In terms of complexity order
DataFrames are more complex than Series which are more complex than atomic numbers. So, if you
use the second method above on a Series we would expect it to return a number. While if we use the
third method on a Series we would expect it to return a Series.

• We will first run through each method demonstrating the complexity change. After that we will talk
about the internals of the resulting object.

1. First method: directly applying an aggregation function:

– If we start with a Series and use this simplifying method, we will get a number:

>>> dfMTA.loc[:, 'vehiclescash'].sum()
330901032

– If we start with a DataFrame and use the same, simplifying method, we will get a Series:

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].sum()
vehiclescash 330901032
vehiclesez 1484674162
dtype: int64

2. Second method: Applying an aggregate function using the agg function, but only a single item
via a string. This is again a simplifying method.

>>> type(dfMTA.loc[:, 'vehiclesez'].agg('sum'))
<class 'numpy.int64'>

>>> type(dfMTA.loc[:, ['vehiclesez']].agg('sum'))
<class 'pandas.core.series.Series'>

3. Third method: Applying aggregate function(s) using the agg function, but via a list. This is
an equal method:

>>> type(dfMTA.loc[:, 'vehiclesez'].agg(['sum']))
<class 'pandas.core.series.Series'>

>>> type(dfMTA.loc[:, ['vehiclesez']].agg(['sum']))
<class 'pandas.core.frame.DataFrame'>

4. Fourth method: Applying aggregate function(s) using the agg function, but via a dictionary
where every value in the dictionary is a string.

– In the case of a Series this is an equal method:

272

D
RA
FT

>>> type(dfMTA.loc[:, 'vehiclesez'].agg({'vehiclesez' : 'sum'}))
<class 'pandas.core.series.Series'>

– In the case of DataFrame it is a simplifying method:

>>> type(dfMTA.agg({'vehiclesez' : 'sum'}))
<class 'pandas.core.series.Series'>

5. Fifth method: Applying aggregate function(s) using the agg function, but via a dictionary
where every value in the dictionary is a list. This method only exists on DataFrames, it will
not work on a Series.

>>> type(dfMTA.agg({'vehiclesez' : ['sum']}))
<class 'pandas.core.frame.DataFrame'>

• Similar to applying the aggregation functions directly there are different objects that can be returned
depending on the form of the input. The final form (columns and indexes) of the returned value is
also dependent on the data type and the operation that is completed. When looking at our examples,
there are a finite number of possibilities:

1. Returns a number: This will return an atomic number.

2. Return a Series: Returns a Series, two possible forms:

(a) Index based on aggregate function name

>>> dfMTA.loc[:, 'vehiclesez'].agg(['count','sum'])
count 1165728
sum 1484674162
Name: vehiclesez, dtype: int64

(b) Index based on column name

>>> dfMTA.loc[:, ['vehiclesez', 'vehiclescash']].agg('sum')
vehiclesez 1484674162
vehiclescash 330901032
dtype: int64

3. Return a DataFrame: Returns a DataFrame:

(a) Index based on aggregate function names (therefore columns are column names)

>>> dfMTA.agg({'vehiclesez' : ['count', 'sum'], 'vehiclescash' : 'sum'})
vehiclesez vehiclescash

count 1165728 NaN
sum 1484674162 330901032.0

• Importantly the table in 17.1 contains a list of how our five operators produce output. In this table
the bolded options present what is recommended for both coverage and ease of remembering.

• A very useful aggregation is nunique which counts the number of unique values in a list:

273

D
RA
FT

>>> dfMTA.loc[:, ['plaza','hr']].agg(['nunique'])
plaza hr

nunique 10 24

• Lets answer a quick question about the MTA dataset: What percentage of cars which pass through
a toll place use an EZ pass?

>>> dfMTA.loc[:, 'vehiclesez'].sum()
/ (dfMTA.loc[:, 'vehiclesez'].sum() + dfMTA.loc[:, 'vehiclescash'].sum())

0.8177431410753236

• The command above is relatively straightforward. Each of the three aggregation operations returns
an numpy.int64 object. Traditional addition and division are then applied to get the final answer.

3 GroupBy Objects

• More complex aggregation operations require using the groupby method in pandas.

• The groupby method is a piece of the “split-apply-combine” pattern for handling subsetted data
aggregation. This pattern involves taking a data set and spliting it along a dimension (usually values
within a column or set of columns) applying an operation (such as sum) to similar values within
those groups and then combining the results. Figure 16.1 presents this visually.

Figure 16.1: Split-Apply-Combine pattern

• For new users of pandas, the groupby object can be difficult to understand because it is not a static
data result. Instead, the groupby object only contains information about the split definition – not
the data itself.

• As a first example lets calculate the max vehiclescash by plaza in the dataset:

274

D
RA
FT

>>> dfMTAg = dfMTA.loc[:, ['plaza', 'vehiclescash']].groupby('plaza')

>>> type(dfMTAg)
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

>>> x_1 = dfMTAg.max()

>>> x_1
vehiclescash

plaza
1 1352
2 1040
3 1594
4 1368
5 674
6 844
7 727
8 599
9 1320
11 2116

>>> type(x_1)
<class 'pandas.core.frame.DataFrame'>

The first thing that we do is define a new object dfMTAg which is a groupby object. Similar to
loc we provide it with a similar sized object in order to define the grouping. In this case we have
told groupby to group by plaza.

Secondly, we limit our groupby object to only the vehiclescash column and then use the aggre-
gation function max to calculate the maximum value. Instead of the above, we also could have done
it this way which doesn’t limit the columns calculated:

>>> dfMTAg = dfMTA.groupby('plaza')

>>> dfMTAg.max().loc[:, 'vehiclescash']
plaza
1 1352
2 1040
3 1594
4 1368
5 674
6 844
7 727
8 599
9 1320
11 2116
Name: vehiclescash, dtype: int64

However, this way would calculate the max across all columns before returning the vehiclescash
column, which is much less efficient.

275

D
RA
FT

Note that this has a row index! The result of this calculation is a DataFrame which has an
index equal to the columns chosen via the groupby method. This would be an index composed of
integers.

>>> dfMTA.loc[:, ['plaza', 'vehiclescash']].groupby('plaza').max().index
Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 11], dtype='int64', name='plaza')

• We can combine multiple operations, such as restricting ourselves to only the second plaza. We
either have to do the filtering before we create the GroupBy object or do it after we have calculated
our aggregate functions. Both of the commands below return the same thing, but demonstrate this
difference:

>>> (dfMTA
.loc[(dfMTA.loc[:, 'plaza'] == 2)]
.groupby('plaza')
.max()
.loc[:, 'vehiclescash'])

plaza
2 1040
Name: vehiclescash, dtype: int64

Once again – what is being returned in each? In the first situation we are getting returned a Series
with an index (plaza), but only a single row while the second is returning only a single number, in
this case a numpy integer.

• How about calculating the percentage of cars using EZ pass over each year?

>>> grp = (dfMTA
.loc[:, ['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.assign(yr=dfMTA.loc[:, 'mtadt'].dt.year)
.groupby('yr')
.sum())

>>> grp.loc[:, 'vehiclesez'] / (grp.loc[:, 'vehiclesez'] + grp.loc[:, 'vehiclescash'])
yr
2010 0.757150
2011 0.792285
2012 0.808791
2013 0.828819
2014 0.836587
2015 0.845386
2016 0.851932
2017 0.851355
dtype: float64

This works because the groupby object, after the sum has been applied, is just a standard DataFrame
which we can do whatever expected math we’d like.

• If we want to group by multiple columns at the same time, we put the columns, as a list, into the
groupby object. For example if we want to know the number of cars using the EZ pass which go
through the toll plaza in each direction, we can do the following:

276

D
RA
FT

>>> d_1 = dfMTA.groupby(['plaza', 'direction']).sum(numeric_only=True)

>>> d_1.head()
hr vehiclesez vehiclescash

plaza direction
1 I 707112 71598396 26925764

O 707112 75466906 27433718
2 I 707112 104041531 20567017

O 707112 81520997 17442388
3 I 707112 104486985 32400024

Note the use of the numeric_only argument which is set to True. In versions of pandas before 2.0
this was not required, but now it is and if you do not use it a warning will appear. In general pandas
will attempt the operation on all allowable columns.

Look carefully at the row index and we can see that we now have a multiindex / hierarchal index on
the rows! We will be deep diving into this shortly.

• If we do not want the rows returned as an index we can add the argument as_index and set it to
False in the groupby. Doing this returns the grouping variables as a column, rather than index. It
is roughly equivalent to adding a reset_index to the result of the aggregation:

>>> d_1 = dfMTA.groupby(['plaza', 'direction'], as_index=False).sum(numeric_only=True)

>>> d_1.head()
plaza direction hr vehiclesez vehiclescash

0 1 I 707112 71598396 26925764
1 1 O 707112 75466906 27433718
2 2 I 707112 104041531 20567017
3 2 O 707112 81520997 17442388
4 3 I 707112 104486985 32400024

• Just as with DataFrames and Series there are five methods for doing aggregation and they can either
be “simplifying” or “equal” in terms of complexity. In all cases, however, a DataFrame is returned
and the simple versus equal refers to the shape of the output data and specifically what is returned
in the columns.

1. Using an aggregation command directly (simplifying).

2. Using an aggregation command with a string (simplifying)

3. Using an aggregation command with a list of aggregation functions (equal)

4. Using an aggregation command with a dictionary of single strings (simplifying)

5. Using an aggregation command with a dictionary of lists (equal).

• In all cases the row will be an index based on the contents of the groupby, so if there is a single
item then there will be a single index, if there are multiple items it is a hierarchal/multiindex.

• With groupby the distinction between the simplifying and equal operations is how the columns are
named / handled and there are two possibilities:

1. (Similar to simplifying methods) We get a DataFrame where the index is the variables in the
groupby and the columns have the name of the original columns.

277

D
RA
FT

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg('sum')

>>> d_1
hr vehiclesez

plaza
1 1414224 147065302
2 1414224 185562528
3 1414224 217926485
4 1387176 135142255
5 1414224 46534289
6 1414224 44735980
7 1414224 172800186
8 1412016 106104332
9 1414224 232681943
11 707112 196120862

>>> d_1.columns
Index(['hr', 'vehiclesez'], dtype='object')

This method does not state what aggregation function was used to get the result.

2. (Similar to equal methods) In the more complex case, then the result has a multiindex on the
column:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1
hr vehiclesez
sum max sum max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747
6 1414224 23 44735980 1604
7 1414224 23 172800186 4042
8 1412016 23 106104332 3402
9 1414224 23 232681943 4926
11 707112 23 196120862 8345

>>> d_1.columns
MultiIndex([('hr', 'sum'),

('hr', 'max'),
('vehiclesez', 'sum'),
('vehiclesez', 'max')],
)

278

D
RA
FT

In this case, the object being returned is another DataFrame. A few important notes:

– First, as we saw before the plaza variable has been turned into an index on the rows, as
this is the grouping column.

– The columns though are a total mess. In this case we have what is called a hierarchal or
multi-index on the columns.

– The outer level has the name of the column begin aggregated while the inner level has the
aggregation function.

– We can see this index more clearly by looking at the columns attribute of the DataFrame
which puts a list of tuples as the column information.

• I recommend, when using gropuby to lean into the the list/dictionary method as, while the mul-
tiindex columns aren’t straightforward, it returns the name of the aggregation function that was
used:

>>> d_1 = (dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.groupby(['hr', 'plaza'])
.agg({'vehiclesez' : ['sum', 'max'], 'vehiclescash' : 'max'})
)

>>> d_1.head()
vehiclesez vehiclescash

sum max max
hr plaza
0 1 2535610 1860 900

2 2626113 1948 556
3 3521056 2753 1227
4 1493721 1415 349
5 480565 430 132

4 Advanced Index / Multiindex

• As before we have a DataFrame which has a multi-index on the rows. If we wish to remove this
multi-index and return it to a column we can use reset_index or use the as_index argument in
the groupby as described previously.

279

D
RA
FT

>>> d_1 = (dfMTA
.groupby(['plaza', 'direction'])
.agg({'mtadt' : ['first'], 'vehiclescash' : ['sum']})
)

>>> d_1.reset_index(inplace=True)

>>> d_1.head()
plaza direction mtadt vehiclescash

first sum
0 1 I 2015-11-28 26925764
1 1 O 2015-11-28 27433718
2 2 I 2015-11-28 20567017
3 2 O 2015-11-28 17442388
4 3 I 2015-11-28 32400024

• Before beginning this discussion, I want to preface this by stating that I’m not a big fan of index
based methods in pandas and I think that they have some serious limitations.

• In this section we are going to cover how to reference values (both columns and rows) which have
mulitindexes.

• The loc command can be used to access any index-based method on a row. For example:

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[2, :]
)

vehiclesez sum 185562528
vehiclescash sum 38009405
Name: 2, dtype: int64

In this example the “2” refers to plaza values which are equal to “2” and it gets returned as a Series.

• If we want to return it as a row we can put the selector inside a list:

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[2], :]
)
vehiclesez vehiclescash

sum sum
plaza
2 185562528 38009405

• In some ways this mirrors how we reference columns within loc commands. We can use any slice
based reference, such as the following two examples demonstrate:

280

D
RA
FT

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[2:4, :]
)
vehiclesez vehiclescash

sum sum
plaza
2 185562528 38009405
3 217926485 67000523
4 135142255 21397862

>>> (dfCars
.groupby(['countyname'])
.agg({'annualfee' : ['sum'], 'registrations' : ['count']})
.loc["A":"B", :])

annualfee registrations
sum count

countyname
Adair 25300774.0 410
Adams 12645641.0 382
Allamakee 37068964.0 403
Appanoose 29947777.0 407
Audubon 20501452.0 393

• Note that in the above we cannot put the slice inside a list – this will raise an error:

>>> (dfCars
.groupby(['countyname'])
.agg({'annualfee' : ['sum'], 'registrations' : ['count']})
.loc[["A":"B"], :])

File "<stdin>", line 4
.loc[["A":"B"], :])

ˆ
SyntaxError: invalid syntax

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[2:4], :]
)

File "<stdin>", line 4
.loc[[2:4], :])

ˆ
SyntaxError: invalid syntax

281

D
RA
FT

• As a reminder Python is case sensitive in its sorting:

>>> "C" < "D" < "a"
True

• In the case of a multi-index we need to use tuples to access rows. In this first example a Series is
returned.

>>> (dfMTA
.groupby(['plaza', 'hr'])
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[(2,4), :])

vehiclesez sum 1527122
vehiclescash sum 533945
Name: (2, 4), dtype: int64

However, in this case, a DataFrame is returned:

>>> (dfMTA
.groupby(['plaza', 'hr'])
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[(2,4)], :])

vehiclesez vehiclescash
sum sum

plaza hr
2 4 1527122 533945

• Personally, I tend to avoid using these systems as I find them to be complex and filled with a ton of
“gotchas”, but we will cover it for completeness so that you have seen it.

• Let’s consider a specific example using the MTA data as we discuss accessing columns and specifying
multiple levels of information.

>>> d_1 = (dfMTA
.groupby(['plaza', 'direction'])
.agg({'vehiclesez' : ['max', 'min'], 'vehiclescash' : ['max', 'min', 'sum']})

)

>>> d_1.head()
vehiclesez vehiclescash

max min max min sum
plaza direction
1 I 2962 0 1232 0 26925764

O 3066 0 1352 0 27433718
2 I 4307 0 1040 0 20567017

O 3255 0 927 0 17442388
3 I 4572 0 1575 0 32400024

• The DataFrame above has an index (plaza and direction) and five columns associated with the
aggregations. There are 19 total rows in the DataFrame (the 11th plaza only has Inbound activity).
Both the rows and columns have multiindexes.

• To reference objects we can use tuples with our loc:

282

D
RA
FT

>>> d_1.loc[:, ('vehiclescash', 'max')].head()
plaza direction
1 I 1232

O 1352
2 I 1040

O 927
3 I 1575
Name: (vehiclescash, max), dtype: int64

>>> d_1.loc[:, [('vehiclescash', 'max')]].head()
vehiclescash

max
plaza direction
1 I 1232

O 1352
2 I 1040

O 927
3 I 1575

>>> d_1.loc[(1,'I'), :]
vehiclesez max 2962

min 0
vehiclescash max 1232

min 0
sum 26925764

Name: (1, I), dtype: int64

>>> type(d_1.loc[[(1,'I')], :])
<class 'pandas.core.frame.DataFrame'>

>>> d_1.loc[(1,'I'), ('vehiclescash', 'max')]
1232

Taking a look at the three examples above, we see that by replacing our traditional column name
with a tuple we can reference single objects within our DataFrame.

• The first example above is straightforward and behaves as expected. We pass in a colon to return all
rows and then pass in a tuple to identify the columns of interest. This returns a SERIES.

• The second example passes the tuple in as a list and (surprise, surprise), this returns the same data
in the previous example, but this time as a DataFrame.

• The third example is similar, expect we use this select rows, rather than columns. HOWEVER, in this
case, we find that the object returned is not a DataFrame, but instead a Series! This is just because
we are selecting a single row, which we have completely specified from the original DataFrame. Note
that this can happen when selecting rows based off of an index even without using tuples, as seen
below.2

>>> type(dfMTA.iloc[0])
<class 'pandas.core.series.Series'>

2Let’s call this gotcha #1

283

D
RA
FT

• The fourth example applies the same list logic as with columns. In this case, instead of returning a
Series, it returns a DataFrame containing the same data as the previous series.

• The fifth example has us selecting both a row and column based on tuples and it returns single value.

• To reference multiple values inside the tuple, we use the command slice(None) to create a slice
which contains nothing. For example:

>>> d_1.loc[: , ('vehiclesez', slice(None))].head()
vehiclesez

max min
plaza direction
1 I 2962 0

O 3066 0
2 I 4307 0

O 3255 0
3 I 4572 0

Or:

>>> d_1.loc[(slice(None), 'I'), (slice(None), 'max')].head()
vehiclesez vehiclescash

max max
plaza direction
1 I 2962 1232
2 I 4307 1040
3 I 4572 1575
4 I 3640 1368
5 I 1675 674

In this second example we use the tuples to return all the max values in the inbound direction.

• What if we want to select a few different values in a tuple, rather than a single one? We can use a
list, which get interpreted as a filter.

>>> d_1.loc[([1,2], 'I'), (slice(None), 'max')]
vehiclesez vehiclescash

max max
plaza direction
1 I 2962 1232
2 I 4307 1040

The command above uses a list to select either plaza #1 or plaza #2.

• Note that this tuple logic is only when using multiindexes. If you are accessing data based on the
contents of the data (and not the index), then the traditional logic we used with loc is what you
want to use.

• I find the tuple / slice(None) logic to be pretty discordant with how I use pandas. Because of
this my normal pattern is to avoid using indexes unless there is an operation that requires them. In
that case I then set_index do the operation and then reset_index in order to remove the index.
It’s too confusing for my small mind.

284

D
RA
FT

5 If not indexes...

• I commonly choose to remove the indexes on columns and usually do it via one of the methods below:

1. Drop a “level”: This method removes one of the levels (usually the outer one). It’s easy to
do, but the downside is that the resulting columns may have repeating names. The command
to do this is the droplevel method of the multi-index and then reassign those values back to
the columns:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = d_1.columns.droplevel()

>>> d_1.head()
sum max sum max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747

The droplevel method, without any parameters, drops the outermost level and, in this case,
the resulting set of columns have repeating names. If we wish to change those repeated names
the best way to do this is by reassigning them via the columns parameter.3

>>> d_1.columns = ['sum_hr', 'max_hr', 'sum_vec', 'max_vec']

2. Concat ’em: The following piece of code is something that I use frequently in order to remove
the multi columns and replace them with a concatenated string.

3Since the columns have repeating names, the rename method does not work.

285

D
RA
FT

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = ['_'.join(col).strip() for col
in d_1.columns.values]

>>> d_1
hr_sum hr_max vehiclesez_sum vehiclesez_max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747
6 1414224 23 44735980 1604
7 1414224 23 172800186 4042
8 1412016 23 106104332 3402
9 1414224 23 232681943 4926
11 707112 23 196120862 8345

3. Blow it all up: This is the most common solution I use when doing EDA. In this solution I
simply keep the columns I’m interested in and rename the rest by setting the column attribute,
similar to what we did after the droplevel command earlier:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = ['sum_hr', 'max_hr', 'sum_vec', 'max_vec']

6 Indexing with aggregations, a big Gotcha

• When using groupby objects it’s important to pay attention to what you are grouping on and,
specifically, it is an index or not.

• Frequently we wish the output of a groupby to not create an index, but instead just return a
standard column. To do this, we use the as_index=False option.

• This function is pretty handy because it “seems” to allows us to move data back and forth between
index to column when we do a groupby.

• HOWEVER, there is a big, big, gotcha with this! That gotcha is that even if you set as_index=False
it will not pull data from an index to a column.

• Consider the following example:

286

D
RA
FT

>>> d_1 = (dfMTA
.loc[:, ['mtadt', 'vehiclesez']]
.groupby('mtadt', as_index=False)
.sum())

>>> d_1.head()
mtadt vehiclesez

0 2010-01-01 316187
1 2010-01-02 380746
2 2010-01-03 359420
3 2010-01-04 494168
4 2010-01-05 518537

>>> d_2 = (dfMTA
.loc[:, ['mtadt', 'vehiclesez']]
.set_index(['mtadt'])
.groupby('mtadt', as_index=False)
.sum())

>>> d_2.head()
vehiclesez

0 316187
1 380746
2 359420
3 494168
4 518537

In both cases we have set as_index=False, but in the second case, when the column being grouped
is a part of the index we lose the mtadt ! As stated, this is because when the column is originally an
index, the as_index method will not pull the column out of the index, instead it will ignore it.

• This can also happen when using as_index=False and then using the column in the aggregation.
In the example below we have added as_index=False and then aggregated by group by column.
By doing this, plaza only appears once which, in this case is for the aggregation function and not
from a column generated from an index.

>>> (dfMTA
.groupby('plaza', as_index=False)
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum'], 'plaza' : 'count'})
)

vehiclesez vehiclescash plaza
sum sum count

0 147065302 54359482 122976
1 185562528 38009405 122976
2 217926485 67000523 122976
3 135142255 21397862 120624
4 46534289 7798630 122976
5 44735980 9676265 122976
6 172800186 26578805 122976
7 106104332 14368223 122784
8 232681943 53530379 122976
9 196120862 38181458 61488

287

D
RA
FT

288

