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1 Helpful Table / Review

• When we started working in Pandas, we said one of the difficult parts was keeping track of what was
being returned by an object. To help with this process, I’ve created the following, Table 17.1, which
maps structure and operation to outcome.

• I personally don’t have all these memorized, only a few which allow me to quickly deal with problems.

Data Operator Example Result Detail

Series

Aggregation .sum() Number #

With .agg .agg(’sum’) Number #

With .agg in list .agg([’sum’]) Series Row Index Agg

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) Series Row Index Col Name

With .agg in dict
(lists)

.agg([’sum’, ’count’]) N/A Operation not allowed

df

Aggregation .sum() Series Row Index Col Name

With .agg .agg(’sum’) Series Row Index Col Name

With .agg in list .agg([’sum’]) df Row Index Agg

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) Series Row Index Col Name

With .agg in
dict (list)

.agg({’col1’: [’sum’]}) df Row Index Agg, possible
Nulls

groupby

Aggregation .sum() df Cols single-level idx

With .agg .agg(’sum’) df Cols single-level idx

With .agg in list .agg([’sum’]) df Cols multiindex

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) df Cols single-level idx

With .agg in
dict (list)

.agg({’col1’: [’sum’]}) df Cols multiindex

Table 17.1: Pandas common operations and their results. Bolded are recommended forms.
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2 Merging data in Pandas

• To merge DataFrames in Pandas we use the pd.merge command.

• The basic structure of merging is the same as in SQL. We need to identify (a) which column(s) we
wish to merge on and (b) what type of merge we wish to do.

• There is one wrench that gets thrown into this, however, which is that Pandas requires you to identify
if the column(s) you are merging on are part of an index or not.

• In terms of the type of merges, they are similar to SQL: left, inner, outer, right and cross are all done
the same.

• Let’s start with merging two datasets without an index, as demonstrated by the following example:

>>> class1 = pd.DataFrame({"sname": ['John', 'Jim', 'Kyle']
, "grade": ['A', 'A', 'C']})

>>> class2 = pd.DataFrame({"sname": ['John', 'Jim', 'Ashley']
, "grade": ['A', 'B', 'F']})

>>> pd.merge(class1, class2, on='sname', how='left')
sname grade_x grade_y

0 John A A
1 Jim A B
2 Kyle C NaN

• We call the function using pd.merge and then provide it the DataFrames being merged. In this
case we provided two DataFrames, class1 and class2. The first DataFrame is considered the “left”
DataFrame and the second is considered the “right” DataFrame. We can specify “left” and “right” as
parameters if we want to be pedantic pd.merge(left=class1, right=class2, on='sname', how='left')

• The merge type, how, accepts any standard join: left, inner, outer, right and cross as a string.

• We use the on parameter to state which column(s) we are merging on. If the columns have the same
name then we simply put them in the on parameter within the method. If we have more than one
column to merge on, we can specify the columns in a list:

>>> pd.merge(class1, class2, on=['sname', 'grade'], how='inner')
sname grade

0 John A

• If the columns are named different things, then we use the “left on” and “right on” operators to do
the merge:

>>> class1T = class1.rename(columns={ 'sname' : 's2'})

>>> pd.merge(class1T, class2, left_on='s2', right_on='sname', how = 'left')
s2 grade_x sname grade_y

0 John A John A
1 Jim A Jim B
2 Kyle C NaN NaN
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• One interesting thing that pandas can do is create an indicator which tells you how the row came
into the resulting dataset, called _merge, as in the example below:

>>> pd.merge(class1, class2, on='sname', how='outer', indicator=True)
sname grade_x grade_y _merge

0 John A A both
1 Jim A B both
2 Kyle C NaN left_only
3 Ashley NaN F right_only

• Instead of calling merge directly from the pandas module, you can also call it as a method from a
DataFrame. When doing this, the calling DataFrame is considered the left DataFrame:

>>> class1.merge( class2, how='left', on='sname')
sname grade_x grade_y

0 John A A
1 Jim A B
2 Kyle C NaN

I prefer to call pd.merge rather than using the above notation. I find it a bit cleaner.

• To do a cross-join in pandas (only available in versions greater than 1.5), you state the merge type
as cross and do not put in any on condition.

>>> pd.merge(class1, class2, how='cross')
sname_x grade_x sname_y grade_y

0 John A John A
1 John A Jim B
2 John A Ashley F
3 Jim A John A
4 Jim A Jim B
5 Jim A Ashley F
6 Kyle C John A
7 Kyle C Jim B
8 Kyle C Ashley F

• Index Merging: In all of the examples above the data which was being merged on was stored as
a value and was not a part of the index. If the column being merged on is in an index in one of
the DataFrames then instead of using left on and right on, the parameters left index and right index
need to be used, where a boolean True/False is given in the function. Consider the following example:

>>> class1idx = class1.set_index('sname')

>>> pd.merge(class1idx, class2, left_index=True, right_on = 'sname', how='left')
grade_x sname grade_y

0.0 A John A
1.0 A Jim B
NaN C Kyle NaN

The first command in the above example changes the column “sname” in class1 to an index.

• BIG THING: When merging data with pandas Nulls will match! This is unlike SQL which has a
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consistent treatment of Null values. Per the pandas documentation:

Figure 17.1: Null treatment in merges

3 Complex Join Conditions

• In all of the above examples we had simple equality joins where we wanted to match one column to
its exact match within another column in a different DataFrame.

• However, there are many situations where a merge needs to be completed based on a more complex
join condition, such as an inequality (≥).

• Pandas, sadly, doesn’t provide an easy method to implement non-equality join conditions. This
means that when we join, we must either create a cross join style merge and then remove those rows
that fail our actual join condition or use an equality join followed by the same filtering method.

• Let’s return to our class tables and say that we want to join rows that have names that don’t match.
For example, I wish to create a dataset which allows me to compare each person against everyone
else in the same class:

>>> d_1 = pd.merge( class1, class1, how='cross')

>>> d_1 = d_1.loc[(d_1.loc[:, 'sname_x'] != d_1.loc[:, 'sname_y']), :]

>>> d_1
sname_x grade_x sname_y grade_y

1 John A Jim A
2 John A Kyle C
3 Jim A John A
5 Jim A Kyle C
6 Kyle C John A
7 Kyle C Jim A

In this case we implemented our more complex join condition after we did a cross-join style merge.

4 Stacking Data

• If we have a dataset and wish to stack or append it to another data set (similar to SQL’s UNION
or UNION ALL) we can use the “concat” operator. This operator takes a DataFrame and then puts
multiple copies of the data back-to-back in a specified manner.

• Let’s look at the following example:

294



D
RA
FT

>>> pd.concat([class1,class2])
sname grade

0 John A
1 Jim A
2 Kyle C
0 John A
1 Jim B
2 Ashley F

The concat function, which is in the main pandas library, like merge, takes in data objects and then
returns those data objects combined. There are two primary ways that concat is used, the first is
above, in which case we wish to stack vertically.

• The concat method can also stack data frames horizontally. For example:

>>> pd.concat([class1, class2], axis=1)
sname grade sname grade

0 John A John A
1 Jim A Jim B
2 Kyle C Ashley F

In the above example, the parameter “axis=1” was added. This parameter tells the concat method
to stack the data along columns, rather than along rows. The default behavior is, unsurprisingly,
“axis=0” which is the behavior in the previous example.

• A BIG difference between how pandas does concatenation and how relational databases do concate-
nation is that the columns in pandas are put in name-alignment. In other words, only columns
which have the same name are matched together. Consider the following example:

>>> print("## Note that this is just class2 with a new column name and a new order")
## Note that this is just class2 with a new column name and a new order

>>> class3 = pd.DataFrame({"grade2": ['A', 'B', 'F']
, "sname": ['John', 'Jim', 'Ashley'] })

>>> pd.concat([class1, class3])
sname grade grade2

0 John A NaN
1 Jim A NaN
2 Kyle C NaN
0 John NaN A
1 Jim NaN B
2 Ashley NaN F

In the example above we see that grade is filled in with “NaN” values for data which was taken from
the second DataFrame while grade2 contains “NaN” values for those observations taken from the
first DataFrame.

Note also that the columns class1 and class3 were not in the same order and the function aligned
those columns to those with similar names. In other words, this only appends columns which have
the same name.

• One parameter of interest is the parameter “join” which defines which columns to return. If join is
set to “inner” then only those columns in both DataFrames are included in the returned DataFrame
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while if “outer” is set, all columns are returned. Consider the following examples:

>>> class4 = class2.copy()

>>> class4.loc[:, 'test'] = 1

>>> pd.concat([class2, class4], join='inner')
sname grade

0 John A
1 Jim B
2 Ashley F
0 John A
1 Jim B
2 Ashley F

>>> pd.concat([class2, class4], join='outer')
sname grade test

0 John A NaN
1 Jim B NaN
2 Ashley F NaN
0 John A 1.0
1 Jim B 1.0
2 Ashley F 1.0

5 Lags and Leads

• A common operation with a DataFrame is to get the previous of next value within a Series. Generally
called “lag” and “lead”, these operations are done with the shift operator, which works on both
Series and DataFrames.

• This operator takes in a number which represents how far back (or forward) in the DataFrame to
step to get a value.

• Looking at the MTA data set we can use this information to get the previous hour’s information:

>>> dfMTAC = dfMTA.loc[(dfMTA.loc[:, 'plaza'] == 1) & (dfMTA.loc[:, 'direction'] == 'I'), :]

>>> dfMTAC = dfMTAC.sort_values(['mtadt', 'hr'])

>>> dfMTAC.loc[:, 'pvsCash'] = dfMTAC.loc[:, 'vehiclescash'].shift(1)

>>> dfMTAC.loc[:, 'nxtCash'] = dfMTAC.loc[:, 'vehiclescash'].shift(-1)

>>> dfMTAC.head()
plaza mtadt hr ... vehiclescash pvsCash nxtCash

103440 1 2010-01-01 0 ... 474 NaN 717.0
103442 1 2010-01-01 1 ... 717 474.0 664.0
103444 1 2010-01-01 2 ... 664 717.0 595.0
103446 1 2010-01-01 3 ... 595 664.0 547.0
103448 1 2010-01-01 4 ... 547 595.0 450.0

[5 rows x 8 columns]

• In this case the “1” argument in the shift parameter tells Pandas to shift the dataset one row in
the forward (or down) direction. In other words, positive values generate lags and negative values
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generate leads.

• The order of the rows is set by the sort_values command previous in the script. Once the order
is set, the shift command steps back a row and the method with the loc then sets the values.

• The shift operator can also be used in conjunctions with a groupby in order to do lags and leads
within a particular group. For example:

>>> dfMTAC = dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]

>>> dfMTAC = dfMTAC.sort_values(['plaza', 'mtadt', 'hr'])

>>> dfMTAgb = dfMTAC.groupby('plaza')

>>> dfMTAC.loc[:, 'pvsCash'] = dfMTAgb.shift(1).loc[:, 'vehiclescash']

>>> dfMTAC.loc[:, 'nxtCash'] = dfMTAgb.shift(-1).loc[:, 'vehiclescash']

>>> dfMTAC.iloc[61487:61490, :]
plaza mtadt hr ... vehiclescash pvsCash nxtCash

1163398 1 2017-01-07 23 ... 191 194.0 NaN
206928 2 2010-01-01 0 ... 290 NaN 363.0
206930 2 2010-01-01 1 ... 363 290.0 346.0

[3 rows x 8 columns]

• Note that we created two objects – the copy and one using a groupby in order to do this operation.
The groupby facilitates the segmentation, but to do the assignment we then rely on returning the
Series to the copied DataFrame. Since we haven’t sorted the data between these operations we can
be assured that the rows are still aligned.

• Shift can also work on an entire DataFrame:

>>> dfMTAC = (dfMTA
.loc[ dfMTA.loc[:, 'direction']=='I', ['plaza', 'mtadt', 'hr', 'vehiclesez', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
)

>>> dfMTAC.shift(1).head()
plaza mtadt hr vehiclesez vehiclescash

103440 NaN NaT NaN NaN NaN
103442 1.0 2010-01-01 0.0 415.0 474.0
103444 1.0 2010-01-01 1.0 702.0 717.0
103446 1.0 2010-01-01 2.0 559.0 664.0
103448 1.0 2010-01-01 3.0 480.0 595.0

6 Apply, map and applymap: Advanced Transformations

• In this section we consider three advanced methods for transforming columns: map, apply and
applymap. These functions allow you to take a DataFrame or Series and apply an arbitrary function
to it.

• The first of these we will consider is applymap which applies a function to a DataFrame element by
element. Note that this function only works on entire DataFrames and not on series:
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>>> from math import log10

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head().applymap(log10)
vehiclescash vehiclesez

0 2.311754 2.678518
1 2.401401 2.686636
2 2.232996 2.544068
3 2.260071 2.487138
4 2.123852 2.447158

• I rarely use the function applymap since it applies a function to every value in a DataFrame, which
isn’t that helpful when you have mixed types within a DataFrame and that function does not already
exist.

• When an alternative exists, applymap is generally slower since it applies operations element-by-
element rather than vectorizing them in a multi-threaded manner. The two code snippets below do
the same operation, but the second is faster (and easier to read).

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head().applymap(lambda x: x**2)
vehiclescash vehiclesez

0 42025 227529
1 63504 236196
2 29241 122500
3 33124 94249
4 17689 78400

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head() ** 2
vehiclescash vehiclesez

0 42025 227529
1 63504 236196
2 29241 122500
3 33124 94249
4 17689 78400

• Note also that you pass it a function which takes in a single argument (in the case above this was
taking log base 10). If you need to pass in a function which takes in multiple arguments then you
will need to use a lambda function.

• The function map is the same thing as applymap but now on a Series, not on a DataFrame. Once
again, it applies an element-by-element operation on a series.

>>> dfMTA.loc[:, 'vehiclescash'].head().map(lambda x: x ** 2)
0 42025
1 63504
2 29241
3 33124
4 17689
Name: vehiclescash, dtype: int64

• One useful application of map is that you can pass it a dictionary and it will apply it as a map to
that Series:
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>>> TransDict = {1 : 'Robert F. Kennedy Bridge Bronx Plaza (TBX)'
, 2 : 'Robert F. Kennedy Bridge Manhattan Plaza (TBM)'
, 3 : 'Bronx-Whitestone Bridge (BWB)'
, 4 : 'Henry Hudson Bridge (HHB)'
, 5 : 'Marine Parkway-Gil Hodges Memorial Bridge (MPB)'
, 6 : 'Cross Bay Veterans Memorial Bridge (CBB)'
, 7 : 'Queens Midtown Tunnel (QMT)'
, 8 : 'Brooklyn-Battery Tunnel (BBT)'
, 9 : 'Throgs Neck Bridge (TNB)'
, 11 : 'Verrazano-Narrows Bridge (VNB)'}

>>> dfMTA.loc[:, 'plaza'].drop_duplicates().map(TransDict).reset_index(drop=True)
0 Robert F. Kennedy Bridge Bronx Plaza (TBX)
1 Robert F. Kennedy Bridge Manhattan Plaza (TBM)
2 Bronx-Whitestone Bridge (BWB)
3 Henry Hudson Bridge (HHB)
4 Marine Parkway-Gil Hodges Memorial Bridge (MPB)
5 Cross Bay Veterans Memorial Bridge (CBB)
6 Queens Midtown Tunnel (QMT)
7 Brooklyn-Battery Tunnel (BBT)
8 Throgs Neck Bridge (TNB)
9 Verrazano-Narrows Bridge (VNB)
Name: plaza, dtype: object

• The last of the complex transforms is apply which has both DataFrame and Series methods.

• The reason that apply is the most complex is that it is the most general on how it takes in a data
as well as what it returns. Consider the following simple examples:

>>> d_1 = pd.DataFrame({'A' : [1,2,3], 'B': [4,5,6]})

>>> d_1.apply(np.sum, axis=1)
0 5
1 7
2 9
dtype: int64

>>> d_1.apply(np.sum, axis=0)
A 6
B 15
dtype: int64

In these examples a function is passed to apply which takes in a list and returns a scalar, which
is then returned. The axis argument tells tells apply in which direction the data is to be passed.
When axis is equal to 1 then rows are passed to the function while if axis is equal to zero, then
columns are passed.

• Importantly, apply can return complex objects:
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>>> l_1 = lambda x: pd.Series([sum(x), len(x)])

>>> d_1.apply(l_1, axis=1)
0 1

0 5 2
1 7 2
2 9 2

>>> d_1.apply(l_1, axis=0)
A B

0 6 15
1 3 3

The lambda function t returns a Series which is then stacked into a DataFrame by the apply
method.

• We can also define more complex functions which are specific to the DataFrame in question:

>>> def f_1(x): return abs( x.loc['vehiclesez'] - x.loc['vehiclescash'] ) ** 2

>>> dfMTA.head().apply(f_1, axis=1)
0 73984
1 54756
2 32041
3 15625
4 21609
dtype: int64

This function does something specific to this DataFrame on a row-by-row basis.

• Note that all three of these methods create a new object and that it must be assigned back to the
DataFrame if you want to access it later:

>>> dfMTAC = dfMTA.copy()

>>> def f_2(x): return abs( x.loc['vehiclesez'] - x.loc['vehiclescash'] ) ** 2

>>> dfMTAC.loc[:, 'newcol'] = dfMTAC.apply(f_2, axis=1)

>>> dfMTAC.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2015-11-28 0 I 477 205 73984
1 1 2015-11-28 0 O 486 252 54756
2 1 2015-11-28 1 I 350 171 32041
3 1 2015-11-28 1 O 307 182 15625
4 1 2015-11-28 2 I 280 133 21609
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