
D
RA
FT

Chapter 18

Window Functions

301

D
RA
FT

Contents

1 Window Functions in Pandas . 303

2 Some gotchas . 307

3 Reshaping Data: Transpose, Stack and Unstack . 308

4 A Bunch of stuff to clean up . 312

5 Combining with the original DataFrame . 312

6 Moving the Window . 316

7 Pivot / Melt . 316

302

D
RA
FT

1 Window Functions in Pandas

• Pandas has two functions, expanding and rolling which do SQL style windows aggregations,
using a syntax similar to groupby.

• An important difference between how Pandas and SQL implement window functions is how sorting
is done. In SQL you never assume that rows have any order and always apply an ORDER BY clause
to sort the data. In Pandas, the sort order is set by operation and you assume that it hasn’t change
when additional operators are applied. In other words, when we user window functions in SQL we
set the row order via the window function but, when we use Pandas, we sort the data ahead of time
and assume that the data retains that order.

• The difference between the rolling and expanding operators is the length of the window under
consideration. The expanding operator has a window which increases to the start of the DataFrame
while the rolling operator goes a fixed number of rows behind.

• The rolling method has one required parameter, which is the window length. This is similar to
setting the ROWS BETWEEN operator in SQL.

• The rolling method has a fixed window length and, by default, sets all rows which have less data
than the window length to NaN.1

• Let’s consider a simple example to show how this works. We will start by building a simple DataFrame
(df), which has two columns.

>>> d_1 = pd.DataFrame({'c1': [0, 1, 2, np.nan, 4], 'c2' : [0,1,2,3,4]})

>>> d_1
c1 c2

0 0.0 0
1 1.0 1
2 2.0 2
3 NaN 3
4 4.0 4

• Just like groupby we use the rolling operator on the DataFrame. In this case we are going to
choose a window length of two to create a rolling object:

>>> x_1 = d_1.rolling(2)

>>> type(x_1)
<class 'pandas.core.window.rolling.Rolling'>

• And, just like groupby we take this object and apply aggregations to it, using the syntax we have
learned before.

Apply function directly:

1This is different than SQL which fills in NULL values when the window length is less than the number of rows.

303

D
RA
FT

>>> x_1.mean()
c1 c2

0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

agg with list:

>>> x_1.agg('mean')
c1 c2

0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

agg with dict:

>>> x_1.agg({'c1' : ['mean'], 'c2' : ['mean']})
c1 c2

mean mean
0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

Looking at the above, in the first row, both columns have returned NaN. This is because we have set
the window size to 2 and, by default, this means that any window of length less than two is set to
NaN. We also see that there are two NaN’s in the columns c1. This is because NaN added to any
other number returns NaN.

• We can change the number of observations required to get a response using the min_periods
argument:

>>> d_1.rolling(2, min_periods=1).mean()
c1 c2

0 0.0 0.0
1 0.5 0.5
2 1.5 1.5
3 2.0 2.5
4 4.0 3.5

Note that this changes the result considerably. Since the first row now has a single observation it
no longer returns NaN. Surprisingly, even the row with index 3 now has a value since there is one
non-NaN value!

• To partition our data, we mix our rolling command with the groupby operator. In the following
command we are going to only look at inbound traffic for the sake of simplicity.

304

D
RA
FT

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza
1 103440 NaN NaN

103442 NaN NaN
103444 1855.0 558.666667
103446 1976.0 580.333333
103448 1806.0 479.000000

• Once again, remember that the sort order is set via code and should not be assumed.

• Pandas accumulates distinct values together – even if they are not connected within the original
DataFrame. In the second example above, despite the plaza being after the hour column in the sort
order this does not mean that multiple plazas are generated per hour. Since the groupby is on plaza
this means that all similar values, independent of their row order are placed together.

• Take a look at what is returned in the example above and, specifically, what is being returned as the
index. Since there was no index in the DataFrame before rolling was applied, the command keeps
the original RangeIndex that was in the DataFrame! This is so that we could merge it back to the
DataFrame before the rolling command.

• Alternatively, we could have moved our identifying columns into an index before specifying the
rolling command so that we could merge it back onto the original DataFrame:

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza plaza mtadt hr
1 1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

which would yield two plaza columns. However, just turning off as_index in the groupby won’t
change this issue:

305

D
RA
FT

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza plaza mtadt hr
1 1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

Instead you need to have your index set to the returning variables you care about. Note that the
as_index has no effect on what gets returned in this situation, as the rolling command will put
plaza into the index no matter what.

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['mtadt', 'hr'])
.groupby('plaza', as_index=False)
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza mtadt hr
1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

• So what have we learned:

– The rolling command will take whatever is in the index and pass it through to the resultant
DataFrame.

– The rolling command will add whatever groupby column appears as an index, no matter
what options you put in the groupby function.

– Make sure that your DataFrame is sorted before applying the rolling operation.

• The other command used when doing window functions is the expanding operator. This operator
calculates the aggregation back to the beginning of the frame in question, rather than based on a
fixed window size.

• For example, if we want to return a running sum we could do the following and, we could verify that
the changeover happens correctly:

306

D
RA
FT

>>> d_1 = (dfMTA
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.expanding().agg({'vehiclesez' : 'sum'})
)

>>> d_1.iloc[122975:122980]
vehiclesez

plaza
1 1163399 147065302.0
2 206928 457.0

206929 986.0
206930 1526.0
206931 2273.0

2 Some gotchas

Adding Back

• These types of functions are very easy to use in ways that cause problems.

• The biggest reason for this is that to run these commands the indexes have to be set just right.

• After running these commands we then want to put this data back into our original DataFrame, but
this means then either changing the original DataFrame to conform with the result of our operation
OR changing the result of our operation so that it conforms to our original DataFrame.

• In either case it is easy to end up in a place where functions do not return an error – but also aren’t
doing exactly what you want. The commands below are one way that we can take a DataFrame, do
our aggregation functions and then add them back to our original DataFrame. Note the complexity
required to make sure that the indexes align properly.

307

D
RA
FT

>>> d_1 = (dfMTA
.set_index(['plaza', 'mtadt', 'hr', 'direction'])

)

>>> d_2 = (d_1
.reset_index(['plaza', 'direction'])
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby(['plaza', 'direction'])
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr', 'direction'])
).copy()

>>> d_1.loc[:, 'rcash'] = d_2.loc[:, 'vehiclescash']

>>> d_1.loc[:, 'rez'] = d_2.loc[:, 'vehiclesez']

>>> d_1.head()
vehiclesez vehiclescash rcash rez

plaza mtadt hr direction
1 2015-11-28 0 I 477 205 817.0 653.333333

O 486 252 998.0 694.333333
1 I 350 171 646.0 499.666667

O 307 182 797.0 509.333333
2 I 280 133 509.0 369.000000

Offsetting

• There are no options within rolling or expanding to offset the data in some way.

• To do this we have to use the shift operator.

3 Reshaping Data: Transpose, Stack and Unstack

• In this section we look at the three commonly used commands for reshaping data between wide- and
long-formats: transpose, stack and unstack.

• These operations strongly rely on indexes on both rows and columns. My common workflow with
these operations is:

1. Realize that I need to reshape the data.

2. Figure out what index I need.

3. Create index.

4. Reshape data.

5. Drop the index.

I don’t use indexes that much, preferring to leave the data “raw”, rather than in named index columns.
Because of this pattern, when I do need to reshape I have to define the appropriate indexes. This is
a bit backward, but my preference is to avoid the complexity of indexes.

308

D
RA
FT

• In the simplest case to reshape data we can simply “transpose” it using the operator T. Let’s look
at the following example:

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& (dfMTA.loc[:, 'direction'] == 'I')
& (dfMTA.loc[:, 'plaza']==1),
['hr', 'vehiclesez', 'vehiclescash']]
.reset_index(drop=True))

>>> d_1.head()
hr vehiclesez vehiclescash

0 0 669 315
1 1 1085 426
2 2 922 426
3 3 767 450
4 4 724 429

We have three columns of data and we wish to make it wide. There are two options for this data:
one is that we have “hr” as a column index or we just have “hr” as a row. We can do either by
choosing to set an index or not:

1. Pure Transpose: Swap everything.

>>> d_1.T
0 1 2 3 4 5 ... 18 19 20 21 22 23

hr 0 1 2 3 4 5 ... 18 19 20 21 22 23
vehiclesez 669 1085 922 767 724 616 ... 1098 1107 971 844 783 626
vehiclescash 315 426 426 450 429 331 ... 489 482 378 369 344 283

[3 rows x 24 columns]

2. Transpose with an Index: Create a column index based on hour.

>>> d_1.set_index('hr').T
hr 0 1 2 3 4 5 ... 18 19 20 21 22 23
vehiclesez 669 1085 922 767 724 616 ... 1098 1107 971 844 783 626
vehiclescash 315 426 426 450 429 331 ... 489 482 378 369 344 283

[2 rows x 24 columns]

Looking at the result there are only two rows this time since “hr” has been turned into a column
index.

• To swap the data back to the original form use the T command again.

• Transpose works when you wish to reshape the entire DataFrame. Most of the time, however, that
operation is too severe and you only wish to make some of the information change shape.

• The first command stack takes data which is “wide” and makes it long while unstack returns the
data to its wide format. Let’s look at an example, using the MTA data:

309

D
RA
FT

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& (dfMTA.loc[:, 'direction'] == 'I')
& ((dfMTA.loc[:, 'plaza']==1) | (dfMTA.loc[:, 'plaza'] == 2)),
['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.reset_index(drop=True)
.set_index(['plaza', 'hr'])
.unstack('plaza')
)

>>> d_1.head()
vehiclesez vehiclescash

plaza 1 2 1 2
hr
0 669 554 315 160
1 1085 799 426 259
2 922 670 426 320
3 767 518 450 187
4 724 423 429 180

• We created a dataset with four columns: plaza, hr, vehiclesez and vehiclescash. We then use unstack
to take this “long” data and turn it “wide” along the plaza dimension. The resulting DataFrame will
have 24 rows and four columns.

• We can undo this command by using stack:

>>> d_1.stack('plaza').head()
vehiclesez vehiclescash

hr plaza
0 1 669 315

2 554 160
1 1 1085 426

2 799 259
2 1 922 426

As you can see we have moved plaza from the column index back as a row index. The only difference
between this and the original DataFrame is the order of the index, which we could remove with
reset_index.

• This might seem like magic, but lets think through the operation a bit and see if we can make sense
of it. First, when we stack a DataFrame all columns with the same values are treated the same in
the resulting DataFrame. This makes the reshape that much easier to conceptualize: all examples of
plazas with the same number are going to have the number when we stack.

• The unstack operation also only works if the index that is set is unique for each row. By doing
this, there is no way to have a conflict on the reshape.

• If we make the data wide by unstack, there may not be values present in all varieties of each index
value. The stack operation, on the other hand, does not create any new data, so missing values
won’t be created.

• To use these operations its important to consider the following:

– What values do you want in the new rows and columns: Are they unique? If not, stop.

310

D
RA
FT

– Once you have identified which values are moving, determine what is a value and what should
be in the index.

– Set the index

– Call stack or unstack with the appropriate variable, from the index, selected.

• Note that you can do multiple values in your reshaping by providing a list. Consider the following:

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& ((dfMTA.loc[:, 'plaza']==1) | (dfMTA.loc[:, 'plaza'] == 2)),
['plaza', 'hr', 'vehiclesez', 'direction', 'vehiclescash']]
.reset_index(drop=True)
. set_index(['plaza', 'hr', 'direction'])
.unstack(['plaza', 'direction'])
)

>>> d_1.head()
vehiclesez vehiclescash

plaza 1 2 1 2
direction I O I O I O I O
hr
0 669 552 554 760 315 300 160 241
1 1085 896 799 1123 426 437 259 357
2 922 747 670 933 426 447 320 360
3 767 694 518 728 450 407 187 257
4 724 577 423 586 429 369 180 188

• Returning to the above, we can also do a “semi” stack:

>>> d_1.stack('plaza').head()
vehiclescash vehiclesez

direction I O I O
hr plaza
0 1 315 300 669 552

2 160 241 554 760
1 1 426 437 1085 896

2 259 357 799 1123
2 1 426 447 922 747

311

D
RA
FT

4 A Bunch of stuff to clean up

• You can see this in the below (no idea what we are talking about)

• When using expanding or rolling keep in mind that the DataFrame returned does not have a
clean index system. Continuing with the above example:

>>> d_1.index.names
['plaza', 'mtadt', 'hr', 'direction']

Unexpected! There are two levels of the index: one generated from the plaza groupby and another
with the name “None”. Even if we decide to stop the index creation with the groupby we will end
up with an unexpected result:

>>> d_2 = (dfMTA
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.expanding().agg({'vehiclesez' : 'sum'})
)

>>> d_2.index.names
['plaza', None]

Comparing the above, we see that both, dfMTAC and dfMTAC2 have an additional index column:

>>> d_1.head()
vehiclesez vehiclescash rcash rez

plaza mtadt hr direction
1 2015-11-28 0 I 477 205 817.0 653.333333

O 486 252 998.0 694.333333
1 I 350 171 646.0 499.666667

O 307 182 797.0 509.333333
2 I 280 133 509.0 369.000000

>>> d_2.head()
vehiclesez

plaza
1 103440 415.0

103441 801.0
103442 1503.0
103443 2037.0
103444 2596.0

• This additional index column has implications for how we combine this data with other DataFrames,
as we will see below.

5 Combining with the original DataFrame

• In the previous examples we generated a new Series or DataFrame which contained the data that we
were interested in. Frequently we wish to combine this new data with the DataFrame that generated
it and, sadly, this can be difficult as we need to create the column and then somehow put it back on

312

D
RA
FT

the original dataset.2

• There are a few different possibilities when doing this:

1. rolling or expanding without a groupby.

2. rolling or expanding with a groupby by creating an index.

3. rolling or expanding with a groupby by using an already present index.

We will go over each in the section below.

Without a groupby

• When there is no groupby we simply compute the expanding or rolling values, reset the index
and then select the column and join back on:

>>> d_1 = dfMTA.copy()

>>> d_1.loc[:, 'newcol'] = (d_1
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.loc[:, 'vehiclescash'])

>>> d_1.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2015-11-28 0 I 477 205 205.0
1 1 2015-11-28 0 O 486 252 457.0
2 1 2015-11-28 1 I 350 171 628.0
3 1 2015-11-28 1 O 307 182 810.0
4 1 2015-11-28 2 I 280 133 943.0

• In the case where we want to sort the data beforehand, it is import to sort_values as well as
reset_index on the original DataFrame to make sure that everything stays aligned:

>>> d_1 = dfMTA.sort_values(['mtadt', 'hr']).reset_index(drop=True).copy()

>>> d_1.loc[:, 'newcol'] = (d_1
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.loc[:, 'vehiclescash'])

>>> d_1.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2010-01-01 0 I 415 474 474.0
1 1 2010-01-01 0 O 386 412 886.0
2 2 2010-01-01 0 I 457 290 1176.0
3 2 2010-01-01 0 O 529 321 1497.0
4 3 2010-01-01 0 I 701 406 1903.0

2I’m really open to being wrong on this, but after spending a significant amount of time on this, I haven’t seen a consistent
solution outside what is shown here.

313

D
RA
FT

Note that the only difference between the two previous code blocks is the sort_values and
reset_index commands.

With a GroupBy and Creating an Index

• Let’s say that we don’t have an obvious set of index columns to use, but we still wish to use a
groupby with a window function. In this case we need to create an index.

• Consider the following situation where we want to calculate the running sum of inbound cars over
the entire DataFrame, but partitioned by plaza:

>>> d_1 = (dfMTA
.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.reset_index(drop=True)
)

>>> d_1.index
RangeIndex(start=0, stop=613608, step=1)

At this stage we have set up our original dataset to be sorted correctly and created a new integer
index. The reason for the drop=True line is to prevent the original index from being placed in the
DataFrame.3

We now take this DataFrame and create our running sum, making sure to start from the sorted
DataFrame:

>>> d_2 = (d_1
.groupby('plaza', sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
)

>>> d_2.head()
vehiclescash

plaza
1 0 474.0

1 1191.0
2 1855.0
3 2450.0
4 2997.0

>>> d_2.index.names
['plaza', None]

Looking at the above, we can see that the index is no longer a RangeIndex and has changed! Mean-
ing that we probably can’t merge it back onto the original DataFrame without some modification.

• Note also that we included the option “sort=False” in our GroupBy. We did this because we want
to make sure that this method doesn’t change the order of the data. Since we know that the order
is going to be stable, we reset the index:

3The original index was also an RangeIndex, but since we dropped all of the outbound rows as well as sorted the DataFrame,
the original index does not exist in the proper form.

314

D
RA
FT

>>> d_2.loc[:, 'runningsum'] = d_2.reset_index().loc[:, 'vehiclescash']

>>> d_2.head()
vehiclescash runningsum

plaza
1 0 474.0 NaN

1 1191.0 NaN
2 1855.0 NaN
3 2450.0 NaN
4 2997.0 NaN

• Combining this all together into two lines:

>>> d_1 = (dfMTA
.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.reset_index(drop=True)
)

>>> d_1['runningsum'] = (d_1
.groupby('plaza', sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index(drop=True)
.loc[:, 'vehiclescash']

)

With a GroupBy using an index

• Alternatively, we can rely on an unique set of index column if they are present in the DataFrame.
Redoing the example above:

>>> d_1 = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
)

>>> d_1.loc[:, 'runningsum'] = (d_1
.reset_index('plaza')
.groupby('plaza', as_index=False, sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr'])
.loc[:, 'vehiclescash'])

• Looking at the above, we set_index on the original DataFrame and then set it again on the created
dataset.

• IMPORTANT: A caveat to the above is that if the index columns are not unique then we can run
into situations where the data is sorted differently in each and thus the merge may result in incorrect
results. This method should only be used if there is a set of columns which uniquely define a row.

315

D
RA
FT

6 Moving the Window

• A limitation in how Pandas implement window functions is that they do not naturally have the
ability to move the window – e.g. offset it by a number of rows.

• For example, lets say that I want to know the maximum value of a column up to, but not including the
current row? This could occur because I want to know if the current row is higher than the previous
maximum value. It’s easy enough to calculate the maximum up to, and including the current row,
but moving that window back one requires an additional operation.

• One way of doing this is to use the shift operator to move the data after the calculation occurs,
such as in the example below which calculates the maximum vehicles which use an cash up to, but
not including the current row (only in the inbound direction)

>>> d_1 = (dfMTA.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
)

>>> d_1.loc[:, 'runningmax_no_current'] = (d_1
.reset_index('plaza')
.groupby('plaza', as_index=False, sort=False)
.expanding()
.agg({'vehiclescash' : 'max'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.shift(1)
.loc[:, 'vehiclescash']

)

>>> d_1 = d_1.reset_index()

• The last line removes the index that we created.

7 Pivot / Melt

• While we won’t cover it in this course, the pivot and melt commands are powerful way to reshape
data.

• While they nearly map to stack and unstack, they do not require the use of an index.

316

