
D
RA
FT

Chapter 2

Basic Manipulations

19

D
RA
FT

Contents

1 Types . 21

2 Renaming a Column . 23

3 Basic Mathematical Manipulations, ABS and LEAST/GREATEST 24

4 Queries without a FROM Clause and Singletons . 28

5 String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM and CONCAT . 29

6 ROUND and Changing Types (CAST) . 33

7 CAST and changing types . 33

20

D
RA
FT

Up to this point we have refrained from transforming any of the data that is being returned in our queries.
In this module we being working on manipulating the data that is being returned via functions, renaming
and other methods. Importantly, none of what we are doing changes the underlying data; it simply
transforms what is being returned to the client.

Before manipulating, however, we need to understand data within a relational database and how it is
represented. In particular, we need to understand “types”.

1 Types

• Relational databases are “strongly” typed, meaning that there are strict rules around what operations
can be performed on what data.

• As in other computer languages, types determines both what operations are available and how oper-
ations behave as a function of the data contained therein.

• In Relational Databases, columns are typed and set when a table is created. A column can only be
a single type.

• Relational databases support a variety of different data types. In this section we will discuss the
most commonly used ones, a hierarchy of which can be found in Figure 2.1.

Common Data Types

JSON Types

JSONB

JSON

Enum Types

Dates and Times

Interval

TimeStamp

Time

Date

Strings

Arbitrary length “text”

Fixed length “char”

Variable length “varchar”

Numbers

Fixed precision “Numeric’

Floating precision “Float”

Integer “Int”

Figure 2.1: Common relational database data types

21

D
RA
FT

Numbers

There are three “styles” of numbers:

1. Integer: These are whole numbers and there are actually 3 different types: smallint (2 bytes, can
store -32,768 to +32,767 (215)), int (4 bytes, can store -2,147,483,648 to +2,147,483,647 (231)) and
bigint (8 bytes, can store -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 (263)).

2. Float: A floating point number is an inexact, variable precision numeric type, usually coming in two
flavors: real (4 bytes, 1E-37 to 1E+37 with a precision of at least 6 decimal digits) and double (8
bytes, 1E-307 to 1E+308 with a precision of at least 15 digit).

3. Numeric: A numeric has a user-defined fixed precision (like 2 decimal places). They vary in size
and type depending on the amount of precision required. An example use of fixed precision is storing
information about money; there is a fixed cut-off (penny) of precision.

In practice database administrators tend to stick to using integers and floats with an occasional numeric
types.

Strings

The three most common string types used are:

1. Variable length: The “varchar” type is used for variable length strings, but with a maximum
number of specified characters. For example, a varchar(10) can contain any string, as long as the
number of characters is less than or equal to 10.

2. Fixed length: The “char” type is used for fixed length strings. For example, a char(10) can contain
any string, as long as the number of characters is less than or equal to 10. The difference between
char and varchar is that this type always reserves space for additional characters, up to the the max,
while a varchar does not. So, to store the names “Nick”, “John” and “Reggie” as a varchar(6) would
take (approximately) (4 + 4 + 6 = 16 bytes) while storing those same names as a char(6) would take
(approximately) 6 + 6 + 6 = 18 bytes.

3. Arbitrary length: The “text” type (sometimes called blob) is used for strings of arbitrary length.
For example, if you wanted to store yelp comments you would use a text field, since the comments
can be any length. Text fields are generally avoided when another type can be used due to storage
efficiency.

Enum

• For categorical data databases use what is called an “enum” or “enumerated” type.

• This type stores the data as an integer which also has a “map” that maps those numbers to specific
values.

• The classic version of this is gender. Consider a survey with the following options:

No. Chars Enum Value

Woman 5 1
Man 3 2
Transgender 11 3
Non-binary/non-conforming 25 4
Prefer not to respond 21 5

• In this example, storing the data as an enum would save a ton of space over storing it as text.

22

D
RA
FT

• The downside is increased complexity and issues with comparisons (do you compare based on the
map or on the text value)?

• All modern databases have a version of this, but we won’t get too much into the details in this course.

JSON

• Modern databases usually have two different options for storing JSON information: a raw represen-
tation and a binary representation.

• The raw representation is just a text blob that, by calling it “JSON” you get access to special
functions only available to JSON objects, specifically functions around keys and values.

• The JSONB representation is a further parsed, binary representation of the JSON data. JSONB
data (usually) is slower to load into the database due to the additional type conversions, but faster
to do lookup operations on.

• All modern databases support JSON path (sometimes called JSONpath) syntax for accessing oper-
ators. This will be discussed later.

Dates

We will hold off on discussing dates until Module 6.

2 Renaming a Column

• The first thing we will learn to do is change the name of tables and columns that are being returned.

• We sometimes want to rename columns. To do this, we use the AS operator:

select
registrations as reg2

from
cls.cars;

reg2

5
198
5020
366
2507

[...]

The query above will return a single column, with the name reg2.

• We can also use it to rename tables, though this won’t be useful for a few weeks!

23

D
RA
FT

select
registrations as reg2

from
cls.cars as c2;

reg2

5
198
5020
366
2507

[...]

• We can actually just skip the AS completely, thought it isn’t recommended since it can make the
query more difficult to read.

select
registrations reg2

from
cls.cars c2;

reg2

5
198
5020
366
2507

[...]

3 Basic Mathematical Manipulations, ABS and LEAST/GREATEST

• If, instead of selecting a column directly from the table, we put down a single value, then that value
will be repeated for each row returned.

• For example, consider the following query:

24

D
RA
FT

select
1 as v1, 2 as v2, 'Nick' as name, vehicletype

from
cls.cars;

v1 v2 name vehicletype
---- ---- ------ --------------

1 2 Nick Bus
1 2 Nick Moped
1 2 Nick Truck
1 2 Nick Travel Trailer
1 2 Nick Truck

[...]

• Note that the data is repeated once for each row and no rows are being generated.

• We can also manipulate the data that is being returned on a row-by-row basis by using functions
within the select.

• For example, we can do basic math functions:

select
registrations + 10 as reg2
, registrations

from
cls.cars

reg2 registrations
------ ---------------

15 5
208 198
5030 5020
376 366
2517 2507

[...]

Note that what this does is create a synthetic column of the number ten (repeated for each row) and
then adds that to the column “reg”. The result is that each entry in “reg2” is equal to “reg” plus 10.

• All standard mathematical operations (+,−, /, ∗) are all supported and math can be done between
columns, such as:

25

D
RA
FT

select
registrations + 10 as reg2
, annualfee * annualfee as annualfee_sq
, registrations

from
cls.cars;

reg2 annualfee_sq registrations
------ ---------------- ---------------

15 462400 5
208 1.921e+06 198
5030 9.60083e+10 5020
376 3.39039e+08 366
2517 1.7873e+10 2507

[...]

• What if we fail to rename the column with AS? The database will generate a column name for us:

select
registrations + 10
, annualfee * annualfee
, registrations

from
cls.cars;

?column? ?column? registrations
---------- ---------------- ---------------

15 462400 5
208 1.921e+06 198
5030 9.60083e+10 5020
376 3.39039e+08 366
2517 1.7873e+10 2507

[...]

In this case the database has no idea what to name the column so calls it ?column?.

• SQL also has more advanced functions, many of which are similar to Excel. For example, the absolute
value function (ABS), which returns the magnitude of a number without regard for its sign, can be
used to return a modified column:

26

D
RA
FT

SELECT
abs(registrations - 1000) as abs_reg, registrations

FROM
cls.cars;

abs_reg registrations
--------- ---------------

995 5
802 198

4020 5020
634 366

1507 2507
[...]

returns two columns from cars. The first is the absolute value of 1,000 subtracted from registrations
and the second is the registrations number.

• As with the other SQL functions we have seen, these can be used within a WHERE clause:

SELECT

*
FROM

cls.cars
WHERE

abs(registrations - 1000) <= 20;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ --------------- --------- - [...]

2005 Hardin Yes Motorcycle Motorcycle [...]
2013 Mahaska No Trailer Regular Trailer [...]
2008 Boone No Trailer Travel Trailer [...]
2016 Marion No Trailer Semi Trailer [...]
2012 Webster No Trailer Semi Trailer [...]

[...]

which returns the 231 rows where the number of registrations are between 980 and 1,020.

• The functions LEAST and GREATEST do exactly what they say – they return the highest and lowest
value in a particular set of observations. Note that LEAST and GREATEST only work within a single
row:

27

D
RA
FT

select
countyname
, abs(registrations - 100) as c1
, abs(registrations - 30) as c2
, registrations
, least(abs(registrations - 100), abs(registrations - 30)) as calc_1
, greatest(abs(registrations - 100), abs(registrations - 30)) as calc_2

from cls.cars
where registrations >= 64 and registrations <= 66
and countyname = 'Wright';

countyname c1 c2 registrations calc_1 calc_2
------------ ---- ---- --------------- -------- --------
Wright 36 34 64 34 36
Wright 34 36 66 34 36
Wright 35 35 65 35 35
Wright 36 34 64 34 36
Wright 36 34 64 34 36
[...]

4 Queries without a FROM Clause and Singletons

• SQL allows for queries without a FROM. When doing this, no columns can be referenced, but the
query will be executed as a single expression. This is handy when running tests, such as if we didn’t
understand the ABS function:

select abs(-5) as calc;

calc

5

We can do this with almost any SQL function, including mathematical operations:

select 5 * 10 as calc;

calc

50

• If a query returns a single value, which we will call a singleton in this class, then we can treat that
value as what it returns. The code below, for example, returns twice the largest registrations:

select 2 * (select registrations from cls.cars order by 1 desc limit 1) as calc;

calc

437950

28

D
RA
FT

• We can also use this in a WHERE clause:

select registrations
from

cls.cars
where

registrations >
10*(select registrations from cls.cars order by 1 asc limit 1)

order by registrations asc
limit 10;

registrations

11
11
11
11
11

[...]

This query will return the registrations in cls.cars which are 10 times more than the smallest
value. It will only return the smallest 10 of those rows.

5 String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM
and CONCAT

• The string operators LEFT and RIGHT behave just as in Excel: they take the left or right characters
of a string. For example:

select left('THIS STRING', 4) as left_4;

left_4

THIS

will return ‘THIS’ since it is the four left most letters of the string in question.

• Both the LEFT and RIGHT commands take the same inputs: a string and the number of characters
to cut:

29

D
RA
FT

select
countyname
, left(countyname, 4) as left_4
, right(countyname, 4) as right_4

from
cls.cars;

countyname left_4 right_4
------------ -------- ---------
Ida Ida Ida
Jasper Jasp sper
Harrison Harr ison
Palo Alto Palo Alto
Adair Adai dair
[...]

• Two other string functions that behave similarly to Excel are LOWER and UPPER, which return a
lowercase and uppercase version of a string column:

select
countyname
, lower(countyname) as lc
, upper(countyname) as uc

from
cls.cars;

countyname lc uc
------------ --------- ---------
Ida ida IDA
Jasper jasper JASPER
Harrison harrison HARRISON
Palo Alto palo alto PALO ALTO
Adair adair ADAIR
[...]

will return the countyname (with capital casing, such as “Adair”) and also a lower- and upper-case
version of the countyname.

• Note that we can nest functions:

30

D
RA
FT

select
lower(left(countyname, 4)) as ll4
,countyname

from
cls.cars;

ll4 countyname
----- ------------
ida Ida
jasp Jasper
harr Harrison
palo Palo Alto
adai Adair
[...]

• the LENGTH command returns the length of a string.1 For example:

select
countyname, length(countyname) as len

from
cls.cars;

countyname len
------------ -----
Ida 3
Jasper 6
Harrison 8
Palo Alto 9
Adair 5
[...]

• The TRIM command can be used to remove letters from a string. The default behavior is to remove
spaces, but it is possible to use it for other things.

select ' aaaa' as val1, trim(' aaa ') as trm;

val1 trm
------ -----
aaaa aaa

Importantly the leading and trailing spaces have been removed from the string. Note that the
commands LTRIM and RTRIM do what they are expected to do – trim from only a single side.

• To put two strings together, similar to an “&” in Excel, we can use a concatenation operator, “||”.
For example, the following query will return a single column with the countyname twice.

1In MS-SQL this is LEN, not LENGTH.

31

D
RA
FT

select
countyname || countyname as str_calc

from
cls.cars;

str_calc

IdaIda
JasperJasper
HarrisonHarrison
Palo AltoPalo Alto
AdairAdair
[...]

• We can also put a constant into the string concatenation to modify it, as in the following example:

select
'County Name = ' || countyname as str_calc

from
cls.cars;

str_calc

County Name = Ida
County Name = Jasper
County Name = Harrison
County Name = Palo Alto
County Name = Adair
[...]

Different variants of SQL use different operators for string concatenation:

SQL Variant Syntax Example

MySQL concat() select concat(col1, col2) from tablename;
MS-SQL + select col1 + col2 from tablename;

• A final useful command for parsing strings is LENGTH, which returns the length of a string. We can
use this with right and left to uppercase the last letter of a string:

32

D
RA
FT

select
left(countyname, length(countyname) - 1)

|| upper(right(countyname, 1)) as lastUpper
from

cls.cars;

lastupper

IdA
JaspeR
HarrisoN
Palo AltO
AdaiR
[...]

which returns a list of countynames with both the first and last letter upper-cased!

6 ROUND and Changing Types (CAST)

7 CAST and changing types

• It can be the case that you want to switch data types and then do operations on them.

• To do this we use the “CAST” operator, which takes a column and a target data type as its inputs.
Unlike other functions, however, the word “as” is used to split the inputs. Consider the following
examples:

select 125.5 + 4 as ans;

ans

129.5

select '125.5' + 4 as ans;
ERROR: invalid input syntax for integer: "125.5"
LINE 1: select '125.5' + 4 as ans;
ˆ

select cast('125.5' as float) + 4 as ans;

ans

129.5

The first query returns the expected answer while the second errors out because it tries to add a
string and an integer. The third query uses the cast operator to change the data type.

33

D
RA
FT

• Rather than using CAST PostgreSQL provides a double colon operator to do the same thing:

select '123.5'::float + 4 as ans;

ans

127.5

• Finally, keep in mind that PostgreSQL will attempt to do many conversions, even if you don’t
explicitly specify them. For example:

select '123' + 4 as ans;

ans

127

Surprisingly, the database is able to make this conversion and thus does the math correctly.

• One commonly used function is the ROUND command which rounds a number.

• Lets say that we wanted to get the annualfee and registrations rounded to the nearest 100.
In this case we could start by doing the following:

select
round(registrations, -2) as rounded_reg
, registrations

from
cls.cars;

rounded_reg registrations
------------- ---------------

0 5
200 198
5000 5020
400 366
2500 2507

[...]

As from the results above, the ROUND commands rounds numbers to the place specified in the integer
following the value to be rounded. In this example the rounding occurs to the −2 position which is
the hundreds place.

Moving to annualfee, we could write it as:

34

D
RA
FT

select
round(annualfee, -2) as rounded_af
, annualfee

from
cls.cars;

which would return:

ERROR: function round(double precision, integer) does not exist
LINE 4: , round(annualfee, -2) as rounded_af

ˆ
HINT: No function matches the given name and argument types. You might need to add explicit type casts.

Why does this return an error?!?!

The round command is type dependent. If you have an integer or a numeric type, the syntax is
ROUND(column, integer) where the integer determines where to round the value. If the
integer is positive, it will round to values after the decimal while negative integers in the ROUND will
return values rounded to places before the decimal, as in the example above. On the other hand,
floats (called “double precision” in the error) do not accept a second argument and will only round
to the nearest integer!

• So how do we handle rounding to the nearest hundreds for a float? There are two options: we either
transform the column to use the ROUND command on floats or we CAST the float as a different type
(either numeric or integer) and then use the available parameters therein.

• The first option:

select
round(registrations, -2) as rounded_reg
, registrations
, 100*round(annualfee/100) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

In the example above the column annualfee/100 is a floating point type which does not take an
additional argument in the function and instead just rounds to the nearest whole number. Since it’s
been divided by 100, this will return the number rounded to the nearest 100. We then multiply it
against 100 to get the original scale.

• The second option is to cast, or change the variables type, in a few different ways:

1. Use the CAST function We can use the CAST command in order to explicitly change the

35

D
RA
FT

type. The CAST command is a bit awkward syntactically, as can be seen below:

select
round(registrations, -2) as rounded_reg
, registrations
, round(cast(annualfee as int), -2) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

rather than using standard parameters, a more sentence like construction occurs.

2. Conversion with :: We can use :: to explicitly cast a variable from one type to another.
This is Postgres only!

select
round(registrations, -2) as rounded_reg
, registrations
, round(annualfee::int, -2) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

3. Implicit conversion: While not possible in every situation, Postgres will implicitly convert
between types when operators are applied. For example, if you multiply a float against an
integer, the result will be a float:

36

D
RA
FT

select
annualfee / 5.0 as af

from
cls.cars;

af

136
277.2

61970.4
3682.6
26738
[...]

In this case, annualfee has been converted from an integer to a float.

• There is a big “gotcha” when using implicit conversion – when doing it the database attempts to
determine which type you want if you aren’t careful you may end with an unanticipated result.
Consider the following:

• Look at what following returns, given that there are 659 rows where registrations is equal to 5:

select registrations / 10 as calc
from cls.cars where registrations = 5;

calc

0
0
0
0
0

[...]

• Why is this occurring? Because the database sees a query which divides two integers and thus
assumes that the result is also going to be an integer. Importantly – this isn’t rounding, it is simply
cutting off the value.

• We can use implicit methods of conversion in order to solve this. Consider the following:

37

D
RA
FT

select registrations *1.0 / 10 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

or

select registrations /10.0 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

or

select registrations::float /10 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

The first two solutions work because they introduce a number with a decimal component. When the
database attempts to do math between decimals and integers it presumes that the answer is going
to be decimal and we get the expected result. The third answer uses the “::” operator to convert the
integer into a floating point number.

There is one important difference between the first two solutions and the final solution. The final
solution converts the data into a floating point number, not a numeric type. As we will learn later,
these are not equivalent and there can be strong reasons to prefer one data type over the other.

38

D
RA
FT

• Finally, we could use the CAST function in order to complete this operation:

select
CAST(registrations as float)/10 as calc

from
cls.cars

where
registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

39

D
RA
FT

40

