Chapter 3

Subqueries, Distinct & Case

41

Contents

I Query Evaluation Order: SELECT and WHERE]. 43
12 Comparisons: BETWEEN, LIKE and ILIKEf 0 0.0 o000 000000000, 45
13 CASE: Conditional Logic| o o 47
4 The DISTINCT Operator]. o . s 52
[5 Subqueries (IN, ANY, ALL)| 55
16 Correlated Subqueries|. L 58

42

1 Query Evaluation Order: SELECT and WHERE

e Assume that we wanted to look at the registrations per dollar of annualfee for 4 Ton Truck Tractors
in Scott county. We could start with the following query:

select
year, registrations, annualfee
from
cls.cars
where
countyname = 'Scott'
and tonnage = '4 Tons'
and vehicletype = 'Truck Tractor';
year registrations annualfee
2010 1 0
2009 1 0
2007 1 5
2008 2 85

e To determine the registrations per annual fee, we could change the select statement to the following:

select

year, registrations::float/ annualfee as ratio
from

cls.cars
where

countyname = 'Scott'

and tonnage = '4 Tons'

and vehicletype = 'Truck Tractor';

which yields an error:

ERROR: division by zero

Unsurprisingly, rows with an annualfee equal to zero are causing this query to fail.

e To handle this we can remove those rows that cause this query to fail:

43

select

from

where

2007
2008

year,

registrations::float/ annualfee as ratio

cls.cars

annualfee > 0

and countyname = 'Scott'

and tonnage = '4 Tons'

and vehicletype = 'Truck Tractor';

0.2
0.0235294

which will return only the two rows where the division by zero.is not an issue. Notice about this
query is that the WHERE clause is evaluated before the SELECT statement is evaluated.

This allows the user to exclude observations that may generate problems before the SELECT statement
operates on them.

An implication of this is that since SELECT. is done after WHERE, things defined in the SELECT are
not available in the WHERE:

SELECT

year, annualfee::float / registrations as avg_fee
from

cls.cars

where avg_fee > 0;

ERROR: column "avg_fee" does not exist

Why did this happen? It happened because the column avg_fee isn’t defined at the time that the
WHERE clause is executed.

The same logic applies to the FROM clause, which is evaluated first. Consider the following query,
which renames our table‘into something else.

select
renamed_table. *
from
cls.cars as renamed_table
limit 100;
year countyname motorvehicle vehiclecat vehicletype tonnage [...]
——— -— [...]
2008 1Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [o..]
[...]

44

In this query the table has been renamed in the FROM clause and that naming is passed through to
the SELECT statement. If we were to instead try to reference cls.cars in the SELECT after the
renaming, an error will occur:

select

cars.x
from

cls.cars as renamed_table
limit 100;

ERROR: missing FROM-clause entry for table "cars"
LINE 2: cars.x

Once again this confirms that the FROM clause is evaluated before SELECT.

2 Comparisons: BETWEEN, LIKE and ILIKE

e Another common comparison operator is BETWEEN:

select
*
from
cls.cars
where
registrations between 2050 and 2100;

year countyname motorvehicle vehiclecat vehicletype tonna [...]
——— [...]
2011 Monroe Yes Multi-purpose Multi-purpose [...]
2010 Shelby No Trailer Small Regular Trailer [...]
2015 1Ida Yes Truck Truck 3 Ton [...]
2013 Dubuque Yes Truck Truck 6+ To [...]
2010 Woodbury No Trailer Semi Trailer [o..]

will return all columns from the table cars where registrations are between 2050 and 2100. Note that
this is equivalent to:

select
*
from
cls.cars
where
registrations >= 2050 and 2100 >= registrations;

year countyname motorvehicle vehiclecat vehicletype tonna [...]
——— [...]
2011 Monroe Yes Multi-purpose Multi-purpose [...]
2010 Shelby No Trailer Small Regular Trailer [...]
2015 1Ida Yes Truck Truck 3 Ton [...]
2013 Dubuque Yes Truck Truck 6+ To [...]
2010 Woodbury No Trailer Semi Trailer [o..]

45

In other words, BETWEEN is inclusive as it includes both end points.

e BETWEEN can also be used with strings, but be careful when doing so. In our cars database, for
example, there is a single county that begins with the letter 'R’ (“Ringgold”). If you run the
following query:

select
*
from
cls.cars
where

countyname between 'R' and 'R';

countyname motorvehicle vehiclecat vehicletype tonnage

will return zero rows! BETWEEN is computed using alphabetical order and, since “R” is before
“Ringgold”, alphabetically, this means that it won’t be returned by this query. Instead, the following
query will return all rows with a countyname which begins with the letter ‘R’:

select
*
from
cls.cars
where
countyname between 'R' and 'S';
year countyname motorvehicle vehiclecat vehicletype tonnage [...]
——— [...]
2011 Ringgold Yes Bus Bus [.o..]
2014 Ringgold Yes Truck Truck 6+ Tons Non-S [...]
2016 Ringgold Yes Moped Moped [...]
2011 Ringgold Yes Motorcycle Motorcycle [...]
2005 Ringgold Yes Motor Home Motor Home - B [o..]

Second note:" alphabetical order PostgreSQL is case insensitive. If you sort the following data:

ABDEOGcfgh

the result will be:

ABcDETfagh

e To further match strings we can use LIKE and ILIKE which searches for specified patterns within a
string. Using LIKE without any special characters yields a simple equality comparison:

where countyname like 'Ringgold'
is equivalent to:
where countyname = 'Ringgold'

e ILIKE on the other hand is a case insensitive matching. In other words, the following where clauses

46

3

will return all rows from Ringgold county:

where countyname ilike 'ringgold'

where countyname ilike 'RINGgold'

Both like and ilike allow for more complex pattern matching using percent sign (“%”) and underscore
(“). The percent sign is used to match any string while the underscore matches a single character.
We call these types of characters “wildcards” and they allow users to create more complex matching
criteria. Continuing with the example of the county of “Ringgold”:

Clause Will Match Ringgold?
like ‘%inggold’ Yes
like ‘ring_old’ No
ilike ‘ring_old’ Yes
like ‘v%’ No
ilike ‘r%’ Yes
ilike ‘%ringgold%’ Yes

Remember that Null presents as False, even with ‘wildecard characters. If there was a column in a
table called “alwaysNull” which was Null in every row, the following:

where alwaysNull ilike '%'

would return zero rows.

One difference between % and _is that underscore requires a character to be there. For example, the
string ’_Ringgold’ will not match Ringgold while *%Ringgold’ will match.

Performance considerations: Be mindful when using LIKE and ILIKE as they are expensive for
the database to evaluate. When evaluating these expressions, the database moves from the first to
last character within each string attempting to determine if each row matches the criteria. Whenever
possible, minimize the use of wildcard characters.

CASE: Conditional Logic

We have covered how to use a SELECT statement to manipulate columns. For example, we can easily
add numbers together or transform a string. An extension of this is to change columns conditionally.
To do this we use the CASE statement, which allows us to conditionally transform what the database
returns.

In the Iowa cars data we may be interested in doing analysis comparing those rows with more than
100 registrations against those with less than 100 registrations. As an example, consider the following

query:

47

SELECT
CASE
WHEN registrations > 100 THEN 'BIG'
ELSE 'SMALL'
END as regSize
’ *

from
cls.cars;

regsize year countyname motorvehicle vehiclecat vehicletype to [...]
——— -— [...]
SMALL 2008 Ida Yes Bus Bus [...]
BIG 2011 Jasper Yes Moped Moped [...]
BIG 2012 Harrison Yes Truck Truck 3 [...]
BIG 2015 Palo Alto No Trailer Travel Trailer [...]
BIG 2016 Adair Yes Truck Truck 3 [...]

This query will return all the columns in the database and one more column, with the name “regSize”
that takes the value of “BIG” or “SMALL” depending on if the number of registrations is greater
than 100.

e In the case of a Null value for registration it would fail the initial conditional and then be caught by
the

e The ELSE clause is optional. The query below provides an example without an ELSE clause:

select
case
WHEN registrations > 100 then 'BIG'
END as regsize
from
cls.cars;

regsize

BIG
BIG
BIG
BIG

In this case, the column regsize will have the value ‘BIG’ for registrations greater than 100. For
values of registration less than 100, the value in the column will be Null.

e The CASE statement is evaluated row-by-row.

e We can add additional criteria by using multiple WHEN arguments. For example, we may want to do
analysis on four different size criteria as can be seen in this query:

48

SELECT
CASE
WHEN
WHEN

registrations > 1000

registrations > 500
WHEN registrations > 100
ELSE 'SMALL'

END as regSize

’ *

from

cls.cars;
regsize year countyname
SMALL 2008 Ida
BIG 2011 Jasper
VERY VERY BIG 2012 Harrison
BIG 2015 Palo Alto
VERY VERY BIG 2016 Adair

THEN
THEN
THEN

'VERY BIG'
'BIG'

motorvehicle

'VERY VERY BIG'

vehiclecat

Bus
Moped
Truck
Trailer
Truck

vehicletype

Bus
Moped
Truck

Travel Trailer

Truck

[...]

We only needed to include “>” signs because each of our inequalities excludes the previous. In other
words, when the database evaluates the above it checks the WHEN statementsin order: it first checks
to determine if the number of registrations is greater than 1000, then if it is greater than 500, then if
it is greater than 100 and finally, only if all 3 of those criteria fail, will it assign the value of “SMALL”.

If the query was written this way:

SELECT
CASE
WHEN registrations > 500 THEN 'VERY BIG'
WHEN registrations > 1000 THEN 'VERY VERY BIG'
WHEN registrations > 100 THEN 'BIG'
ELSE 'SMALL'
END as regSize
’ *
from
cls.cars;
regsize year countyname motorvehicle vehiclecat vehicletype to [...]
——— -— [...]
SMALL 2008 1Ida Yes Bus Bus [...]
BIG 2011 Jasper Yes Moped Moped [...]
VERY BIG 2012 Harrison Yes Truck Truck 3 [...]
BIG 2015 Palo Alto No Trailer Travel Trailer [.o..]
VERY BIG 2016 Adair Yes Truck Truck 3 [...]
[...]

then zero observations would be classified as “VERY VERY BIG” since every row with registrations
greater than 1000 are also greater than 500.

e When using case statements we can use any statement that we would use in a WHERE clause, including
using AND and OR to create more complex Boolean statements:

49

select
case
when registrations > 500 and annualfee > 500 THEN 'Type 1'
when registrations >= 500 and annualfee < 499 THEN 'Type 2'
when registrations < 500 and annualfee > 500 THEN 'Type 3'
when registrations >= 500 and annualfee < 499 THEN 'Type 4'
else
'hasNulls'
END as regSize
’ *
from
cls.cars
limit 1000;

regsize year countyname motorvehicle vehiclecat vehicletype to [...]
777 -— [...]
Type 3 2008 1Ida Yes Bus Bus [...]
Type 3 2011 Jasper Yes Moped Moped [...]
Type 1 2012 Harrison Yes Truck Truck 3 [...]
Type 3 2015 Palo Alto No Trailer Travel Trailer [...]
Type 1 2016 Adair Yes Truck Truck 3 [2]

In the query above if there is a Null registration or annualfee then that row will fail the
Boolean clauses on part of the CASE statement, resulting in those rows being caught in the ELSE
condition.

e Note that you can use a CASE statement in a WHERE clause, though it uncommon to do so. What
does the following do?

select » from cls.cars
where
case
when registrations < 100 then 1
when registrations between 200 and 300 then 2
when registrations > 500 then 3 end = 2;
year countyname motorvehicle vehiclecat vehicletype tonnage [...]
77 - [...]
2016 Van Buren Yes Truck Truck 4 Tons [o..]
2009 Lucas Yes Truck Truck 4 Tons [.o..]
2015 Keokuk Yes Truck Truck 4 Tons [...]
2008 Decatur No Trailer Regular Trailer [...]
2009 Lee Yes Truck Truck 5 Tons [o..]
[...]

e There is a second syntax for the CASE statement, which is not used as frequently. This second syntax
can only handle equality constraints against a single column. An example of this syntax can be shown
below where we use it to create a new columns which adjusts the annual fee paid by inflation.

50

select
case year

WHEN 2005 THEN annualfee x 1.053
WHEN 2006 THEN annualfee % 1.051
WHEN 2007 THEN annualfee x 1.05
WHEN 2008 THEN annualfee % 1.04
WHEN 2009 THEN annualfee % 1.038
WHEN 2010 THEN annualfee % 1.035
WHEN 2011 THEN annualfee % 1.03
WHEN 2012 THEN annualfee % 1.01

WHEN 2013 THEN annualfee
end as annualfeeInflation
from cls.cars;

annualfeeinflation
707.2
1427.58
312951

When using this syntax we first specify which column we are going to compare on (in this case that
column is year). For each row the year column is compared against the value after WHEN and, if that
conditional is true, the THEN clause is evaluated.

e A useful application of the CASE statement is dealing with divide by zero. Previously we had dealt
with division by zero problems by removing those rows using a WHERE clause. If, instead of removing
that row, we wish to keep it but return a different value we can use CASE:

select
case
when annualfee > 0 then registrations / annualfee
else null
end as regPerDollar
from
cls.cars;

regperdollar
0.00735294
0.142857
0.0162013
0.0198773
0.0187523
]

The annual fee values which are either Null or equal to zero will be caught by the case statement

o1

and, rather than returning an error, the database will return a Null.

e We can use the CASE statement to implement the LEAST and GREATEST operator on two columns,
but will need to be careful about nulls. Consider the following example:

select

case when X >= Y then X else Y end as larg
from

tablename;

In this case, if X is Null, then Y is returned. However, if Y is Null the Null is returned, which is NOT
what we want. In to implement GREATEST (or LEAST) via a CASE statement we have to verify that
the variable is not Null, as the query below demonstrates:

select

case when Y is null or X >= Y then X else Y end as lrg
from

tablename;

In this case if Y is Null then X is returned, no matter the value in X while if X is Null then Y is
returned, no matter Y’s value.

4 The DISTINCT Operator

e The DISTINCT operator can be used in a number of ways in SQL. The first way that we will describe
is how it can be used is to remove duplicates from the data that is being returned.

e If we want to know what years are in the Iowa cars table we can run the following command:

SELECT DISTINCT year from cls.cars;

which is a list of every distinct year in the table. We can combine this with the order by command
to see an ordered list of the years in the database:

52

SELECT DISTINCT
year
FROM
cls.cars
ORDER BY year;

e When learning SQL, it helps to think of SELECT and SELECT DISTINCT as two different functions.
DISTINCT is not modifying a column, it is more fundamentally changing what is returned.

e DISTINCT is computationally expensive. Novice query writers often make the mistake of putting it
in queries when it is not required and causing the queries to-be slower than necessary.

e Let us use the following dataset to understand how Nulls and multiple columns are handled. The table
“BillPaid” contains information from a credit card company. In particular, it contains information
about if a person paid their bill at the end of each month. The column paytype represents how the
Person paid their bill and is Null if a person did not pay. If a person didn’t pay, the amount is zero
to zero.

PersonID | Month ‘ Paid Y paytype ‘ Amt ‘

1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 NULL 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 NULL 0
3 3 0 NULL 0

Figure 3.1: “BillPaid” Table

e As before, we can use DISTINCT on a single column:

53

select distinct PersonID from cls.BillPaid;

personid

as well as on multiple columns:

select distinct PersonID, PayType from cls.BillPaid;

personid paytype

Visa
Visa

Note that this command does not create any data — only takes the unique entries by row. Also
demonstrated is that Null is handled as if it was its own, unique, value.

e A common error with DISTINCT is trying to sort-on a column which is not in the SELECT. Consider
the following query:

select distinct PersonID from cls.BillPaid order by amt desc;

Looking at the table, we can see that PersonlD #1 has a value equal to 100, which is larger than any
other value — so should it go first? At the same time, PersonID #2 has a value of 25, which is larger
than PersonID #1 in months 1 and 3, so should it be first? Since the database is not sure which to
do, it does something different: it responds with an error.

ERROR: for SELECT DISTINCT, ORDER BY expressions must appear in select list

e Importantly, DISTINCT and ORDER BY can be used at the same time, but only if the column being
sorted is the same one as the column being made distinct, as can be seen in the query below.

SELECT distinct amt from cls.BillPaid order by amt desc;

54

5 Subqueries (IN, ANY, ALL)

e Up to this point, we have used SELECT and simple WHERE clauses to choose which rows and columns
to return in a query. Simple WHERE clauses allow us to choose rows based on other data within that
row, but not on information outside that row. In this section we will write subqueries to filter rows
based on data not present in that row. We will continue to use Table the “Bill Paid” table.

Looking over this table, you can see that there are three people who had bills. To write a query
which identifies missing payments we could write the following query:

select
*
from
cls.BillPaid
where
Paid = 0;
personid month paid paytype amt
2 2 0 0
3 2 0 0
3 3 0 0

Which will return three rows, two from person #3 and one from #2.

e Assume we want to analyze all the rows from people who have ever missed a payment. The WHERE
clause above will not work in this scenario since we need to know information about rows outside the
one being evaluated. In this case we use the IN clause and a subquery:

select
*
from
cls.BillPaid
where
personid IN (select personid from cls.BillPaid where paid = 0);
personid month paid paytype amt
2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

The IN clause used with the WHERE is evaluated exactly as you would expect: for each row in the
table, the query determines if that countyname is in the list generated by the subquery. These types
of subqueries are called uncorrelated because nothing in the subquery references anything outside
that subquery.

95

e When using this syntax, the subquery needs to return a single column of data. Looking at the above
we can see that the subquery above satisfies this constraint.

e The opposite of IN is NOT IN, which only accepts rows do not match the contents of the subquery.
For example, the following would return only the rows associated with people who have never missed
a payment:

select
*
from
cls.BillPaid
where
personid NOT IN (select personid from cls.BillPaid where paid = 0);

personid month paid paytype amt
1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15

e Note that the subquery syntax does not look at the name of the column within the subquery. For
example, the following query will work as well:

select
*
from
cls.BillPaid
where
personid IN (select personid as sillyColumnName
from cls.BillPaid where paid = 0);

personid month paid paytype amt
2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

e Keep in mind that the reason we need to use this syntax is because we need information that is
outside of the current row to evaluate the current row. A simple WHERE clause can only access the
information in the current row.

e The IN clause can be used without a SELECT as a subquery:

56

select

*
from

cls.billpaid
where

personid in (1,2);

personid month paid paytype amt
1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 0

In this case there is no official subquery — the query itself contains the data to be filtered on.

e An important consideration when writing subqueries is the use of DISTINCT in the subquery itself.
The IN operator verifies if a particular value is within a list. If the list has duplicates then the
verification process will take longer. In the above example, the subquery returns 3 values (2,3,3),
two of which are duplicates. When making the comparison, having duplicates in the subquery list
will result in an inefficient comparison. To avoid this; we generally add a DISTINCT operator to the
subquery:

SELECT
*
FROM
cls.BillPaid
WHERE
personid IN (select distinct personid from cls.BillPaid where paid = 0);
personid month paid paytype amt
2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

This will yield a more efficient query. Because the dataset is small, the difference in this query will
be negligible, for larger datasets this change may be necessary for the query to run in a manageable
amount of time.

e There are two other operators that are used in a similar fashion, though I do not find myself using
them frequently, ANY and ALL, which are used in the following manner:

WHERE column [OPERATOR] ANY/ALL (SUBQUERY)

57

e For example, consider the following two examples:

SELECT =

where amt

FROM cls.BillPaid

<= ALL (select amt from cls.billpaid where personID = 1);
personid month paid paytype amt
1 1 1 Visa 15
1 3 1 Visa 15
2 2 0 0
3 1 1 Check 10
3 2 0 0
[...]
SELECT =«
FROM cls.BillPaid
where amt
<= ANY (select amt from cls.billpaid where personID = 1);
personid month paid paytype amt
1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 0

In the first example, only those rows where amt is less than all values from PersonID #1 (15,100,15),
are returned. This would return the 4 rows with amt = 0 and amt =10, this is equivalent to < 15.
The second query, on the other hand, only checks to see if it less than a single value within that list,
so this is equivalent to < 100, which returns all rows in the table.

6 Correlated Subqueries

e A correlated subquery references the outer query within the subquery. For example, consider the

following query:

58

select
*
from
cls.cars as A
where
vehicletype = 'Motorcycle'
and year <> 2010
and countyname in
(select
countyname
from
cls.cars as B

where
A.countyname = B.countyname
and B.year = 2010
and B.vehicletype = 'Motorcycle'

and A.registrations > B.registrations);

year countyname motorvehicle vehiclecat
2016 Jasper Yes Motorcycle
2011 Ringgold Yes Motorcycle
2013 Clayton Yes Motorcycle
2013 Grundy Yes Motorcycle
2016 Davis Yes Motorcycle

vehicletype

Motorcycle
Motorcycle
Motorcycle
Motorcycle
Motorcycle

tonnage

This will return all motorcycle rows, for each county that have more registrations than that same
county’s registrations for 2010. For example, Lucas county has the following number of registrations

for each year, for motorcycles:

select
year
, registrations
from
cls.cars
where
countyname ='Lucas'
and vehicletype = 'Motorcycle'
order by 1;

year registrations
2005 530
2006 586
2007 606
2008 592
2009 587

[...]

This statement will only evaluate positive in 2006 and 2007, the rows that have more registrations
than 2010. To furuther understand this query, think through each row as an item within a loop, with

the subquery being evaluated each time.

59

In Lucas, year 2005, for example, the subquery will look like :

(select
countyname
from
cls.cars as B
where
'Lucas' = B.countyname
and B.year = 2010
and B.vehicletype = 'Motorcycle'
and 530 > B.registrations);

countyname

This subquery will return Null since no countyname will match the constraints in the where clause.
Since it returns Null, the outer where clause evaluates False and 2005 is not returned.

e If we wanted to find all counties which increased the number of motorcycle Tegistrations from 2005
to 2006 we could write the following query:

select
countyname
from
cls.cars as A
where
A.year = 2006
and A.vehicletype = 'Motorcycle'
and countyname in
(select countyname
from
cls.cars as B

where
year = 2005
and A.countyname = B.countyname
and B.vehicletype = 'Motorcycle'

and A.registrations > B.registrations);

countyname
Adair
Osceola
Madison
Worth
Hancock

[...]

e Correlated subqueries are costly computationally since the subquery is reevaluated for row, you
can think of them as FOR LOOPS in SQL. They are also incredibly difficult to read. Generally

60

speaking, they should be avoided. We will learn techniques for avoiding them later.

e There is one interesting case for correlated subqueries, which is identifying the “first row” of a
particular group. Consider the following query:

select
a.countyname, a.registrations
from
cls.cars as a
where
a.registrations =
(select
registrations
from
cls.cars as b
where
a.countyname = b.countyname
order by
b.registrations desc
limit 1)

Note that this query will take an incredibly long time to evaluateE] It will return, for each county,
the largest number of registrations for a row. In other words, correlated subqueries can be used to
determine the first value for a particular row. This same technique can be used to determine the
maximum or minimum value of a particular column within subgroups. Later on we will learn much
smarter techniques for doing this.

T stopped it after one minute so I'm not sure how long it takes in total.

61

