Chapter 5

Aggregations

83

Contents

[Introduction to MTA datasetl o 85
2 GROUP BY clausel e 86
13 Column numbering syntax] 91
4 Aggregates and CASE Statements| o 93
15 Named Subqueries| e e e 95

84

1 Introduction to MTA data set

e In this section we are going to introduce another data set, the NY MTA dataset, which contains
information on the number of cars that pass certain plazas between January 1st, 2010 and January
7th, 2017, about 7 years of data.

e Looking at the dataset, we see that it is a long (or tall) dataset, with 6 columns. The data represents
the number of cars that go through different toll plazas in the city by hour. The data is divided
between cars which paid via EZ-pass and cash and split between those drivers heading away from
the city (“O” direction) and those heading into the city (“I”).

select » from cls.mta limit 10;

plaza mtadt hr direction vehiclesez vehiclescash
2 2013-10-14 16 I 2469 336
2 2013-10-14 16 O 2393 473
2 2013-10-14 17 I 2853 425
2 2013-10-14 17 O 2116 417
2 2013-10-14 18 I 2575 394

e For example, if we want to see the number of cards which are heading outbound between 2 and 3 am
on the 15th of June, 2015 over the Robert F. Kennedy Bridge Manhattan Plaza (Triborough bridge
into Manhattan, which is Plaza #2), can be found by writing the following query:

select
*
from
cls.mta
where
plaza = 2
and direction = 'I'
and hr = 2
and mtadt = '2015-06-15";

plaza mtadt hr direction vehiclesez vehiclescash

2 2015-06-15 2 I 173 58

e A unique row in this dataset is denoted by the items in the WHERE clause — plaza, mtadt, hr and
direction.

o If we wanted look at the total number of cars, for each hour, that go through Plaza #2 we could do
the following:

85

select
plaza, mtadt, hr
, vehiclesez + vehiclescash as totalCars
from
cls.mta
where
plaza = 2
and direction = 'I'
order by mtadt, hr;

plaza mtadt hr totalcars
2 2010-01-01 0 747
2 2010-01-01 1 903
2 2010-01-01 2 742
2 2010-01-01 3 501
2 2010-01-01 4 456

2 GROUP BY clause

e Up until this point we have been slicing data, removing rows and columns. The next syntax we will
study aggregates, or collapses, data into a smaller number of rows. In other words, this operation
now looks between rows in order to undertake its calculation. Importantly, this operation defines
subsegments of the table that are treated as a single group.

e Consider the following query:

select
MAX (vehiclescash) as maxcash
, plaza

from
cls.mta

group by plaza;

GROUP BY to combines similar values. This query combines data by plaza and returns the maximum
number of cars that pay cash in any hour through that plaza.

e This query will return 10 rows, one for each plaza. The query calculates the the maximum value of

86

vehiclescash for by plaza.

e The GROUP BY clause is applied and written after the WHERE clause. If a WHERE clause removes
a row then that row will not be aggregated via the function.

select
MAX (vehiclescash) as maxcash
, plaza
from
cls.mta
where
plaza = 2
group by plaza;

e GROUP BY requires every column within the SELECT clause to be either inside a function or part
of the GROUP BY. The following query yields an error:

select
MAX (vehiclescash) as maxcash
, hr
, plaza
from
cls.mta
group by plaza;

ERROR: column "cls.hr" must appear in the GROUP BY
clause or be used in an aggregate function

e Other aggregate functions include average (“AVG”), minimum (“MIN”), count (“COUNT”) and sum
(“SUM”):

87

select

plaza
, min(vehiclescash) as minveh
, count (vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh
from
cls.mta
group by plaza
order by avg(vehiclescash) desc;
plaza minveh ctveh sumveh avgveh
11 0 61488 38181458 620.958
3 0 122976 67000523 544.826
1 0 122976 54359482 442 .033
9 0 122976 53530379 435.291
2 0 122976 38009405 309.08

e Implicit GROUP BY: If every column within a select statement is an aggregate function then the
query will still run, even if it does not have GROUP BY put down explicitly:

select
sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh
from
cls.mta;
sumveh avgveh
330901032 283.858

In this case, the entire table is treated as a single group within the GROUP BY.

e There is also a special aggregation: COUNT(DISTINCT XXX), which returns the number of unique
values within a given group:

select

count (distinct plaza)
from

cls.mta;

as plazact

plazact

Note that COUNT DISTINCT counts the number of unique non-null entries.

88

e We can include multiple columns within the GROUP BY and it will calculate the functions among
unique combinations of the columns selected. For example:

select
plaza
, mtadt
, sum(vehiclescash + vehiclesez) as totalcars
from
cls.mta
group by plaza, mtadt
order by plaza, mtadt;

plaza mtadt totalcars
1 2010-01-01 57606
1 2010-01-02 63405
1 2010-01-03 59496
1 2010-01-04 72610
1 2010-01-05 72880

e What if I forget to include an AS?

select

count (vehiclesez)

, max (vehiclesez)

, max (vehiclescash)
from

cls.mta;

1165728 8345 2116

Without the AS, the database returns the column with the name of the aggregate function.

e Before continuing, lets answer some simple questions about the table. What percentage of cars which
pass through a toll plaza during this time period use an EZ-pass?

select

sum (vehiclesez) ::float / (sum(vehiclesez) + sum(vehiclescash)) as pct_EZ
from

cls.mta;

0.817743

We can see that it is around 80%.

89

e COUNT AND SUM can be used to return the number of rows within the table. Looking at the
queries in Table you can see that placing a number within a count returns the number of rows.
Note that the second query will return the number of rows because it counts the number of ‘1’s that
appear. It is not counting the number of rows in the first column — it is counting the number of rows
that would appear if every value within that column was equal to 1. Consider the following variants
on this in the following table:

Syntax What is returned
select count (*) Number of rows
select count (1) Number of rows
select 2*count (*) Twice the number of rows
select 2xcount (2) Twice the number of rows
select 2xcount (-1) Twice the number of rows
select 2xcount (Null) Zero

select 2xsum(l) Twice the number of rows
select 2*sum(2) Four times the number of rows

Table 5.1: Examples of special syntax for counting rows

e GROUP BY treats NULL as a special, unique value. If there'are NULL values in the column being
grouped, they will be treated as a single group.

e Null values within aggregate functions are not straightforward. Consider the following table (“null_test”)
which has a two columns (“val” and “cond”), as can be seen below:

select * from cls.null_test;

e SUM, MAX, MIN, COUNT and AVG all ignore Null values:

90

select
sum (val)
, max(val)
, min (val)
, avg(val)

as st

as mt
as mnt
as at

, count (val) as ct

, count (distinct wval) as cd
from
cls.null_test;
st mt mnt at ct cd
6 3 1 2 3 3

Note that this is different then when using ORDER BY, which treats Null values as larger than any
other value. Note that AVG(X) is equivalent to SUM(X) / COUNT(X). With COUNT (val), the Null
is ignored. However with count(*) the Null is not ignored!

select count (*) as ct, count(val) as ct2 from cls.null_test;

e If the entire column is Null within a group, then each of AVG, MAX, MIN, SUM will return Null
and COUNT will return zero:

select

cond

, sum(val) as st

, max(val) as mt

, min(val) as mnt

, avg(val) as at

, count (val) as ct

, count (distinct wval) as cd
from

cls.null_test
group by cond;
cond st mt mnt at ct cd
A 6 3 1 2 3 3
B 0 0

3 Column numbering syntax

e As with ORDER BY we can use column numbering syntax:

91

select
plaza
, min(vehiclescash) as minveh
, count (vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh
from
cls.mta
group by 1;

1 0 122976 54359482 442.033
2 0 122976 38009405 309.08

3 0 122976 67000523 544.826
4 0 120624 21397862 177.393
5 0 122976 7798630 63.4159

In the query above the number 1 in the GROUP BY clause denotes the first column in the select
statement. In this case, that is “plaza”

e We can add multiple columns when using column numbering syntax. For example:

select
plaza
, mtadt
, min(vehiclescash) as minveh
, count (vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh
from
cls.mta
group by 1,2;

plaza mtadt minveh ctveh sumveh avgveh
1 2010-01-01 249 48 28166 586.792
1 2010-01-02 186 48 28583 595.479
1 2010-01-03 261 48 27272 568.167
1 2010-01-04 143 48 26210 546.042
1 2010-01-05 103 48 25218 525.375

In this query, the data is grouped by two columns: plaza and mtadt. The grouping columns are
specified as “1,2”.

92

4 Aggregates and CASE Statements

e Aggregates and CASE statements can be combined in powerful ways. Let’s first count the number
of rows in the database where the hour is 2 and the number of vehicles paying cash is greater than
400. As demonstrated by the query below we can use a WHERE clause to only include the rows in
the table which fulfill this criteria.

select
sum(l) as ct
from
cls.mta
where
hr = 2
and vehiclescash > 400;

ct

256

e Let’s say that we also wish to get the number of rows in the database where the the number of
vehicles paying cash is less than or equal to 5 and the hour is 2. Because we are cutting up the
data into two mutually exclusive ways we need to do something other than a WHERE clause. If we
remove the rows to satisfy the first condition then we remove rows that would need to be counted in

the second condition.

We can implement both criteria using a CASE statement inside an aggregate function:

select
sum(case
when hr = 2 and vehiclescash > 400 then 1
else 0 end) as ctl
, sum(case
when hr = 2 and vehiclescash < 5 then 1
)

else 0 end) as ct2
from
cls.mta;
ctl ct2
256 1465

e We could also use the COUNT notation, rather than a SUM, by switching the zeros to Null:

93

select
count (case
when hr = 2 and vehiclescash > 400 then 1
else Null end) as ctl
, count (case
when hr = 2 and vehiclescash < 5 then 1
else Null end) as ct2

from
cls.mta;
ctl ct2
256 1465

e We can group by any column expression, including a CASE statement. In the following example we
use a CASE statement to categorize different rows and then use a GROUP BY statement in order
count how many of each occurs.

SELECT
CASE
WHEN vehiclescash > 400 then 'More than 400"
WHEN vehiclescash >= 5 then 'Between 5 and 400’
ELSE 'Less than 5'
END as breakdown_flag
, count (1)
, avg(vehiclescash) as avgCash
FROM
cls.mta
group by 1;

Between 5 and 400 824717 153.548
Less than 5 10778 1.22323
More than 400 330233 618.516

This creates categories of data, based on vehiclescash and then returns how many rows are in each
category.

e We can define a column by almost anything and then group by it. In the following example, we look
at the difference between the vehicles which pay cash and which pay by EZ pass. If the difference is
sufficiently large we categorize it one way and if not, another, but we remove zero’s first!

94

select
case
when vehiclescash = 0 then 'Zero Cash'
when abs(vehiclescash - wvehiclesez) ::float
/ vehiclescash < .05 then 'less than'
else 'more'
end
, count (1) as ct
from
cls.mta
group by 1;

case ct
Zero Cash 6512
less than 2765
more 1156451

In the case above this returns 3 rows and 3 columns since we are aggregating on a column which can
take one of three values. Aggregating on case statements is an incredibly powerful way to calculate
statistics on

5 Named Subqueries

e Let’s calculate the number of cars that go through each plaza each day in the Inbound direction
using cash:

select
sum(vehiclescash) as totalcash
, mtadt
, plaza
from
cls.mta
where
direction = 'I'
group by mtadt, plaza;

totalcash mtadt plaza
14783 2010-01-01 1
8965 2010-01-01 2
17309 2010-01-01 3
3840 2010-01-01 4
1454 2010-01-01 5

e Now, let’s try to calculate how many cars go through the average plaza on the average day in the
inbound direction using cash. In other words, we want to take the average of the above. In this case

95

we can try to do the following;:

select

avg (sum(vehiclescash))
from

cls.mta
where

direction = 'I';

ERROR: aggregate function calls cannot be nested
LINE 2: avg(sum(vehiclescash))

Unfortunately we can’t nest aggregation functions. To answer the question above we need to use a
subquery since we need to do an aggregation on another aggregation.

select
avg (sumcash) as avgcars
from
(select
sum(vehiclescash) as sumcash
, mtadt
, plaza
from
cls.mta
where direction = 'I'
group by mtadt, plaza
) as innerQ;

avgcars

7394.15

To understand this query, lets start by breaking it apart and focusing on the inner query first:

96

select
sum(vehiclescash) as sumcash
, mtadt
, plaza
from
cls.mta
where direction = 'I'
group by mtadt, plaza;

14783 2010-01-01 1
8965 2010-01-01 2
17309 2010-01-01 3
3840 2010-01-01 4
1454 2010-01-01 5

The result of this inner query is a table itself wth three columns and a row for each mtadt-plaza
combination. The column sumcash represents the number of cars, in total, which went through that
plaza-mtadt combination using cash — which is the just the number that we want to average!

Using this table we can then take an average on it, which we do in an outer query. Importantly, when
we nest queries in this fashion we have to give then a name, which we do in this case with the AS
clause. As a note, just like when naming a column the AS itself is optional, though recommended.

Lets look at another example: ‘What percentage of the day-plaza combinations in our dataset have an
inbound-to-outbound ratio of less than 90% for cash transactions? In other words, what percentage
of plazas, on a given day, have more outbound traffic than inbound traffic by 10%?

Just as before we will need to compute multiple levels of aggregation. Lets work from the inside out
— first computing the number of inbound-and outbound cars for each plaza-mtadt combination.

97

select
sum(case when direction = 'I'
then vehiclescash else 0 end) as InboundCash
, sum(case when direction = 'O’
then vehiclescash else 0 end) as OutboundCash

from
cls.mta

group by
plaza, mtadt

inboundcash outboundcash
14783 13383
14680 13903
14049 13223
13202 13008
12688 12530

Note that we are grouping by columns which we are not selecting — which is allowable under most
SQL variants. Since we don’t need to know which row is associated with each plaza or mtadt, only
the totals, we will not select it. Once we have this data we can then do the aggregation that we are

interested in:

select
sum(case when InboundCash <= .90 % OutboundCash
then 1 else 0 end)::float
/ count (1) as pct
from
(select
sum(case when direction = 'I'
then vehiclescash else end) as InboundCash
, sum(case when direction = 'O’
then vehiclescash else 0 end) as OutboundCash

o

from
cls.mta
group by
plaza, mtadt) as innerQ;

0.0303516

e In the cases above we were required to use a subquery because we wanted to do two levels of
aggregation, which is a common problem. For example, let’s say that we wanted to find the average
number of rows per plaza, for rows which have more than 700 EZ pass cars. In this case we first
need to do two levels of aggregation — first calculating the number of rows, per plaza, which fulfill
the criteria and then averaging over the plaza — as can be seen below:

98

select
avg (numrows) as avgrows
from
(select
count (1) as numrows
, plaza
from
cls.mta
where
vehiclesEZ >= 700
group by 2) as innerQ;

avgrows

In the case above the inner query only has 10 rows, one for each plaza while the outer query only
returns the average.

99

