
D
RA
FT

Chapter 8

Joins

123

D
RA
FT

Contents

1 Joins . 125

2 UNION and UNION ALL . 132

3 Best Practices when Combining Tables . 134

4 Intermediate Joins . 136

4.1 Aggregations on-self . 136

4.2 Cross Joins for missing values . 137

5 Statistical Analysis in SQL . 138

124

D
RA
FT

1 Joins

In this section we combine tables using the JOIN operator. There are a number of different ways to combine
data, which we will go into now.

• Lets consider the following two tables, which we will use to demonstrate the different types of joins:

Table 8.1: Join Example Tables

Table 8.2: Class1 Table

sname grade

John A
Jim A
Kyle C

Table 8.3: Class2 Table

sname grade

John A
Jim B

Ashley F

• The first join we will consider is the LEFT JOIN, which keeps all records from the first table (the
“Left Hand Side” or “LHS”) and only those records that match from the second table (or the “Right
Hand Side” or “RHS”):

select
class1.*, class2.*

from
cls.class1

left join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B
Kyle C

There are two components to the JOIN syntax. The first, within the FROM clause, specifies the
type of JOIN (in this case “LEFT JOIN”) to attempt and the second, the ON clause, determines
how two rows are defined to match. The ON operator acts like a WHERE clause in that any boolean
condition or set of conditions can be put in it by using parenthesis, AND and OR. Any type the
expression within the ON operator is true, the database regards those rows as matching. Mentally,
you should think of a JOIN as going through every possible combination of rows and deciding if a
row matches with another based on the match criteria in the ON clause.

In this SELECT statement we choose all columns from both class1 and class2 tables. Since the
columns have the same names in both tables we see that the column names are repeated in the
resulting table.

This LEFT JOIN leaves the second sname and grade Null for the “Kyle” row from the first table, as
there is no matching row in the second table.

• There is also a RIGHT JOIN, which, similar to the LEFT JOIN, keeps all rows from the right-hand,
or second, table:

125

D
RA
FT

select
class1.*, class2.*

from
cls.class1

right join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

Ashley F

• If we only want to consider rows that are in both tables, we use an INNER JOIN, the syntax for
which is just JOIN:

select
class1.*, class2.*

from
cls.class1

join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

In this case, only John and Jim are returned since they are the only individuals that are in both
tables.

• A FULL JOIN (sometimes called an OUTER JOIN, or FULL OUTER JOIN) includes all rows from
either table:

126

D
RA
FT

select
class1.*, class2.*

from
cls.class1

full join
cls.class2

on
class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B
Kyle C

Ashley F

Because “Kyle” <> “Ashley”, these two rows are kept separate.

• In a few instances we may wish to create every possible combination of rows1, which we call a CROSS
JOIN. The syntax for a CROSS JOIN is below:

select
class1.*, class2.*

from
cls.class1

cross join
cls.class2;

sname grade sname grade
------- ------- ------- -------
John A John A
John A Jim B
John A Ashley F
Jim A John A
Jim A Jim B
[...]

Note that this returns every possible combination of rows. Since we selected “*” it also returns every
column – which means columns with duplicated names. If we wanted to only return a few of the
columns we could do the following:

1This is sometimes called a Cartesian product.

127

D
RA
FT

select
class1.sname as name1
, class2.sname as name2
, class1.grade as grade1
, class2.grade as grade2

from
cls.class1

cross join
cls.class2;

name1 name2 grade1 grade2
------- ------- -------- --------
John John A A
John Jim A B
John Ashley A F
Jim John A A
Jim Jim A B
[...]

• If the columns that we are matching on have the same name than we can use USING, rather than
ON to specify the matching column. Doing so generates a different type of output:

select

*
from

cls.class1
full join

cls.class2
USING(sname);

sname grade grade
------- ------- -------
John A A
Jim A B
Kyle C
Ashley F

In this example, the database combined the sname column into a single column! USING tells the
database that the columns represent the same data and need not be repeated. This type of “natural”
join is extremely powerful when you are joining two tables which represent similar data.

• The following query demonstrates USING with multiple columns:

128

D
RA
FT

select

*
from

cls.class1
inner join

cls.class2
using(sname, grade);

sname grade
------- -------
John A

• Let’s look at what the following returns, which uses both a USING with multiple columns and a
FULL JOIN:

select

*
from

cls.class1
full join

cls.class2
using(sname, grade);

sname grade
------- -------
John A
Jim A
Kyle C
Jim B
Ashley F

In this example, the database returns 5 rows, since the only row that matches on both sname and
grade is John. People should study more.

• What does the following return?

129

D
RA
FT

select * from
cls.class1

left join
cls.class2

on class1.sname = class2.sname
and class1.grade >= class2.grade;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A
Kyle C

Since this is a LEFT JOIN, this will include all values from the left hand table, but it will only match
those which are alphabetically earlier or the same as the right hand side table. In other words, this
returns only those rows from the right hand side where the person did better in class1.

sname | grade | sname | grade
-------+-------+-------+-------
Jim | A | |
John | A | John | A
Kyle | C | |
(3 rows)

• Keep in mind that the USING clause creates a synthetic column using a similar construct as a CASE
statement:

select
sname as from_using
, class1.sname as lhs
, class2.sname as rhs
, CASE

when class1.sname is not null then class1.sname
else class2.sname

END as coal
from

cls.class1
full join

cls.class2
using(sname);

from_using lhs rhs coal
------------ ----- ------ ------
John John John John
Jim Jim Jim Jim
Kyle Kyle Kyle
Ashley Ashley Ashley

130

D
RA
FT

The column “from using” and “coal” are created as the output of the using statement and from the
coalesce statement; from the above they are clearly the same. Importantly, the above statement also
demonstrates that in the SELECT statement there is still access to the underlying, original columns.

• In the above examples we used ON to tell the database which columns to match. However, we can
also use the WHERE clause to match. For example:

select
class1.*, class2.*

from
cls.class1

cross join
cls.class2

where class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

generates the same output as our inner join. In this case, we used a cross join to generate all possible
combinations of rows and only kept those rows where the sname was the same in both columns via
a WHERE clause.

• The following syntax is also used when doing cross joins.

select

*
from

cls.class1, cls.class2
where class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

This can also be done with more than two tables.

• We can also combine ON and WHERE:

131

D
RA
FT

select
class1.*, class2.*

from
cls.class1

left join
cls.class2

on
class1.sname = class2.sname

where
class1.grade = class2.grade;

sname grade sname grade
------- ------- ------- -------
John A John A

The above example uses a left join and a where clause to recreate an inner join.

• Very importantly, we can use any boolean expression as our JOIN condition as in the following
example where we create a table which only contains those rows, in class1, which are not the same
name! Note that this joins class1 on itself!

select
lhs.sname as lname, lhs.grade as lgrade, rhs.*

from
cls.class1 as lhs

left join
cls.class1 as rhs

on lhs.sname <> rhs.sname;

lname lgrade sname grade
------- -------- ------- -------
John A Jim A
John A Kyle C
Jim A John A
Jim A Kyle C
Kyle C John A
[...]

2 UNION and UNION ALL

• Another way to combine data is using UNION and UNION ALL. While the JOIN syntax puts tables
side-by-side, the UNION and UNION ALL tables stack tables vertically on each other – appending
(or concatenating) the data vertically.

• The syntax for UNION and UNION ALL looks a bit different than the syntax for other SQL com-
mands since they behave not on tables, but on queries. Consider the following example of the UNION
ALL command:

132

D
RA
FT

select sname from cls.class1
UNION ALL
select sname from cls.class2

sname

John
Jim
Kyle
John
Jim
[...]

• The columns have to be selected in the correct order. The following query, which switches the order
of grade and sname in the second table will not return properly aligned columns.

select sname, grade from cls.class1
UNION ALL
select grade, sname from cls.class2

sname grade
------- -------
John A
Jim A
Kyle C
A John
B Jim
[...]

• The column types are also defined by the first statement in the command, so all SELECT statements
must generate compatible columns. For example if our first query had an integer in the first column
position then the second query can’t put a string in the first position.

• The difference between UNION and UNION ALL is that UNION will automatically deduplicate
records. For example, consider the following query:

select sname from cls.class1
UNION
select sname from cls.class2

sname

Kyle
John
Ashley
Jim

In this case only four rows are returned since John and Jim are duplicates. UNION removes whole,

133

D
RA
FT

exact, row duplicates. Every column in the row must be the same for UNION to decide two rows are
duplicates.

• Keep in mind that using UNION is very expensive as removing duplicates is a costly process.2

• We can use the UNION command to determine the best grade that a student received, as in the
following query.

select sname, MIN(grade) as best_grade
from

(select sname, grade from cls.class1
UNION ALL
select sname, grade from cls.class2) as innerQ

group by 1;

sname best_grade
------- ------------
Kyle C
Jim A
Ashley F
John A

• As we said above, both UNION and UNION ALL work on statements not tables, meaning that the
following command will not complete successfully:

select sname, MIN(grade) as best_grade
from

(select sname, grade from cls.class1) as lhs1
UNION ALL
(select sname, grade from cls.class2) as lhs2

group by 1;

3 Best Practices when Combining Tables

1. Always have a Unique Side. When you join two tables on a particular column, make sure that
the column that you are joining on is unique on one side. If you join on a column with duplicates
on both sides the database is going to create rows (via the cartesian product), a generally negative
outcome.

• Up to this point we only considered the case where both sides are unique. Let’s assume that
are tables now look like the below:

In the tables above, there are multiple observations for the name “John”. The lack of uniqueness
causes problems, as we will see in the following query:

2On my computer, using the NYSE dataset, it took 2 seconds to count the number of rows after a UNION ALL between
2010 and 2011 while doing a UNION took over five times as long.

134

D
RA
FT

Table 8.4: Join Example Tables (II)

Table 8.5: Class3 Table

sname grade

John A
John B
Kyle C

Table 8.6: Class4 Table

sname grade

John A
John B
John C
Tim F

select
class3.sname as lname
, class3.grade as lgrade
, class4.sname as rname
, class4.grade as rgrade

from
cls.class3

left join
cls.class4

on class3.sname = class4.sname;

lname lgrade rname rgrade
------- -------- ------- --------
John A John A
John A John B
John A John C
John A John A
John A John B
[...]

• In this case, we can see that every pair-wise combination of the matching rows (6 = 3 · 2 for
John) was generated by the query. In other words, the “ON” clause behaved as if a “WHERE”
clause; each time a row matched it was returned.

• Another way of thinking about this is that when the database encounters multiple matching
rows it behaves similar to a cross-join.

2. When using JOIN, label each of the tables that you are joining on based either on:

(a) Their location or position (“LHS”, “RHS”, etc.)

(b) Their contents/the data that they contain

Naming tables in this way leads to increased readability.

3. In terms of efficiency, joins should be undertaken in the following order:

(i) inner

(ii) left

(iii) outer

(iv) cross

135

D
RA
FT

There are two major reasons for this order: (1) Readability (we read left to right and combining left
and right joins creates difficult to understand queries) and (2) Query optimization (which we will
touch upon later).

4. Be consistent with USING/ON/WHERE. I recommend using WHERE for filtering conditions, ON
for matching and USING only if it makes sense. Mixing and matching yields difficult to understand
queries.

5. No Nulls in join columns. Nulls do not match each other, so joining on a null always returns false!
In other words, if you do a left join, the Nulls on the left are kept while the Nulls on the right are
dropped.

4 Intermediate Joins

In this section we examine two common patterns around joins: (1) using cross joins to find missing data
and (2) using joins with an aggregation to create datasets.

4.1 Aggregations on-self

• Consider trying to figure out what percentage of cars use EZ pass, outbound, by hour of the day. In
other words we want to calculate the total number of cars which use EZ pass outbound each hour,
take the sum and then divide each row. In order to do this we use a join:

SELECT
hr, perhr::float / tot as pct

FROM
(select sum(vehiclesez) as perhr, hr from cls.mta
where direction = 'I' group by 2) as lhs

CROSS JOIN
(select sum(vehiclesez) as tot from cls.mta
where direction = 'I') as rhs

hr pct
---- ----------

0 0.0155521
1 0.00869534
2 0.00568274
3 0.00519111
4 0.0080607

[...]

• What if we calculate this percentage, but by plaza? In this case we do a similar operation, but we
now we join based on plaza:

136

D
RA
FT

SELECT
plaza, hr, perhr::float / tot as pct

FROM
(select sum(vehiclesez) as perhr, hr, plaza from cls.mta
where direction = 'I' group by 2,3) as lhs

JOIN
(select sum(vehiclesez) as tot, plaza from cls.mta
where direction = 'I'
group by plaza) as rhs

USING(plaza);

plaza hr pct
------- ---- ---------

1 0 0.019748
2 0 0.0135566
3 0 0.0181986
4 0 0.005301
5 0 0.0143782

[...]

4.2 Cross Joins for missing values

• A CROSS JOIN can be useful when looking for missing data or trying to fill-in data. Let’s consider
the case where we want to verify that there is no missing data within the MTC table. In order to do
this we can create a synthetic table which should have all values:

select * from
(select distinct mtadt from cls.mta) as lhs
cross join
(select distinct hr from cls.mta) as rhs1
cross join
(select distinct plaza from cls.mta) as rhs2
cross join
(select distinct direction from cls.mta) as rhs3

mtadt hr plaza direction
---------- ---- ------- -----------
2016-08-06 11 11 O
2016-08-06 11 11 I
2016-08-06 11 8 O
2016-08-06 11 8 I
2016-08-06 11 9 O
[...]

Each of the subqueries above contains the unique values for the particular column and cross joining
them creates a dataset containing every possible combination of the three columns. We can then join
this back against the original data to see if there are any missing values:

137

D
RA
FT

select rhs2.plaza, count(1)
from

(select distinct mtadt from cls.mta) as lhs
cross join

(select distinct hr from cls.mta) as rhs1
cross join

(select distinct plaza from cls.mta) as rhs2
cross join

(select distinct direction from cls.mta) as rhs3
left join cls.mta

using(mtadt, hr, plaza, direction)
where mta.mtadt is null

group by 1
order by count(1) desc;

plaza count
------- -------

11 61536
4 2400
8 240
5 48
1 48

[...]

From this we can see that there are a number of missing observations and the plazas which are
missing!

5 Statistical Analysis in SQL

In this section we will calculate a number of different features of the stock data.

1. Calculate the variance of the closing price of each stock for the year 2010. In particular, write a
query which returns one row per stock and two columns: the symbol and the estimated variance of
the closing price.

• In this case we will use the formula that the variance of a variable is equal to:

V AR[X] = E[(X − X̄)2]

=
1

n

n∑
i=1

(
Xi − X̄

)2
which we will estimate over our data.3

• The difficult part of computing this value is that we need to make sure that on each row of our
dataset is the appropriate X̄, which we deal with by calculating it in a separate query and then
joining back on the original stocks data, as can be seen in the query below:

3While some authors divide by n− 1 rather than n in the formula, we will stick with n as it makes only a small difference
in our numbers and changing to n− 1 can be easily accomplished using the same method.

138

D
RA
FT

select
lhs.symb, avg((rhs.cls - avg_cls)ˆ2) as est_var

from
(select avg(cls) as avg_cls, symb

from stocks.s2010 group by 2) as lhs
join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
group by 1;

symb est_var
------ ----------
A 6.00884
AA 22.6683
AAME 0.0532238
AAN 3.29018
AAON 0.423454
[...]

2. Stocks can have very large order of magnitude differences in key characteristics, such as volume and
price. In order to complete analysis on these values, statisticians often normalize the values. One
such normalization is the Z-score, which involves taking each value, subtracting off its mean and
dividing by the standard deviation:

Zi =
xi − x̄
σx

where x̄ is the mean and σx is the standard deviation of the variable in question.

Another method of normalization is linear, where the minimum takes on the value 0 and the maximum
takes on the value of 1. This linear transformation can be computed as follows:

Li =
xi −min(x)

max(x)−min(x)

• Let’s calculate the linear normalization of the closing price for each stock individually. Specif-
ically I want to return the date, symbol, closing price and normalized closing price for each
stock.

• Just like in the previous example, we need to compute an aggregate (in this case, the minimum
and maximum values of the closing price and join it back to the original data. Once this is
complete we can then apply the formula.

139

D
RA
FT

select
lhs.symb, retdate, rhs.cls,

(rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as n_cls
from

(select max(cls) as max_cls, min(cls) as min_cls, symb
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
order by 1,2,3;

symb retdate cls n_cls
------ ---------- ------- --------
A 2010-01-04 22.3891 0.289632
A 2010-01-05 22.1459 0.26689
A 2010-01-06 22.0672 0.259531
A 2010-01-07 22.0386 0.256857
A 2010-01-08 22.0315 0.256193
[...]

• Note that running the above query will fail! Why? Because some stocks have min and max
closing prices which are equal. In order to avoid this, we can remove those rows:

select
lhs.symb, retdate, rhs.cls,

(rhs.cls - lhs.min_cls) /(lhs.max_cls - lhs.min_cls) as n_cls
from

(select max(cls) as max_cls, min(cls) as min_cls, symb
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls != max_cls
order by 1,2;

symb retdate cls n_cls
------ ---------- ------- --------
A 2010-01-04 22.3891 0.289632
A 2010-01-05 22.1459 0.26689
A 2010-01-06 22.0672 0.259531
A 2010-01-07 22.0386 0.256857
A 2010-01-08 22.0315 0.256193
[...]

3. Calculate the β and α coefficients of a simple linear regression of price on volume.

• As a reminder, if we run a simple linear regression of the form

y = α+ βx

140

D
RA
FT

, then our estimated coefficients are equal to:

β̂ =
COV (X,Y)

V AR(X)

=
1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ)
1
n

∑n
i=1(Xi − X̄)2

α̂ = Ȳ − β̂X̄

• We can calculate this using the following query:

select
beta, acls - beta * avol as alpha

from
(select

avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010) as IQ;

beta alpha
----------- -------
0.000754955 1571.76

• Alternatively, we could be a bit more clever to remove the outer query:

select
avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010;

beta alpha avol acls
----------- ------- ----------- -------
0.000754955 1571.76 1.49898e+06 2703.42

This calculation retains the same information as the previous, but avoids using an inner query.

4. We can also calculate the R2 for this regression using the following formula:

R2 = 1−
∑n

i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

= 1−
∑n

i=1(yi − (α+ βxi))
2∑n

i=1(yi − ȳ)2

141

D
RA
FT

• To complete this, we start with the previous query which generated alpha and beta and modify
it to keep both the average volume and average closing price. We then CROSS JOIN this single
row against the original stocks data:

select
max(alpha) as alpha
, max(beta) as beta
, 1 - avg((cls - (alpha + beta * vol))ˆ2) /avg((cls - acls)ˆ2) as r2

from
(select

avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010) as lhs
cross join

stocks.s2010 as rhs;

alpha beta r2
------- ----------- ----------
1571.76 0.000754955 0.00121957

• Sadly our results are quite poor. The R2 that I get is equal to 0.00122.

5. Why don’t we repeat the analysis, this time by stock?

• Let’s first compute our α and β̂ by stock:

select
lhs.symb
, avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(cls) as acls, avg(vol) as avol, count(1) as ct

from stocks.s2010 group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1;

symb beta alpha avol acls
------ ------------ -------- ---------------- --------
ABC -3.18636e-08 30.316 3.63933e+06 30.2001
CLF -1.22468e-06 67.6353 5.69978e+06 60.6549
SRDX -4.75616e-06 16.2657 107476 15.7546
PDLI -3.88147e-10 6.00289 2.73978e+06 6.00183
VIAB -3.80486e-07 35.7868 4.41476e+06 34.107
[...]

notice that the query above added an additional filter to remove stocks with less than 100 data
points. There are about 250 total trading days in our dataset, so by adding this filter we remove
those stocks which are only in the data a small number of times. This also avoid any potential
divide by zero error.

• We can also compute our r2 by stock, as demonstrated below. Once again, we limit ourselves
to stocks which have more than 100 data points.

142

D
RA
FT

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((cls - (alpha + beta * vol))ˆ2) / avg((cls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(cls) as acls, avg(vol) as avol, count(1) as ct

from stocks.s2010 group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ -------- ------------ --------
HOV 3.4266 3.46633e-07 0.612527
MGIC 2.37857 1.78381e-06 0.582692
HPJ 3.54329 7.42622e-06 0.55797
FTK 1.36355 8.33776e-07 0.524931
NUV 10.1132 -1.03103e-06 0.516196
[...]

6. Why not with scaled parameters?

143

D
RA
FT

with sd as (
select

lhs.symb, retdate
, (rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as ncls
, (rhs.vol::float - lhs.min_vol) / (lhs.max_vol - lhs.min_vol) as nvol

from
(select max(cls) as max_cls, min(cls) as min_cls

, symb, max(vol) as max_vol, min(vol) as min_vol
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls <> max_cls and min_vol <> max_vol
)

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((ncls - (alpha + beta * nvol))ˆ2) / avg((ncls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) as beta
, max(acls) - avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(ncls) as acls, avg(nvol) as avol, count(1) as ct

from sd group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ --------- --------- --------
HOV 0.0333546 0.823546 0.612527
MGIC 0.125339 1.27091 0.582692
HPJ 0.0803212 0.976241 0.55797
FTK 0.076173 1.08304 0.524931
NUV 0.858118 -1.1852 0.516196
[...]

7. What about Z-scaled? STOPPED HERE.

144

D
RA
FT

with sd as (
select

lhs.symb, retdate
, (rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as ncls
, (rhs.vol::float - lhs.min_vol) / (lhs.max_vol - lhs.min_vol) as nvol

from
(select max(cls) as max_cls, min(cls) as min_cls

, symb, max(vol) as max_vol, min(vol) as min_vol
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls <> max_cls and min_vol <> max_vol
)

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((ncls - (alpha + beta * nvol))ˆ2) / avg((ncls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) as beta
, max(acls) - avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(ncls) as acls, avg(nvol) as avol, count(1) as ct

from sd group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ --------- --------- --------
HOV 0.0333546 0.823546 0.612527
MGIC 0.125339 1.27091 0.582692
HPJ 0.0803212 0.976241 0.55797
FTK 0.076173 1.08304 0.524931
NUV 0.858118 -1.1852 0.516196
[...]

145

D
RA
FT

146

