
D
RA
FT

Chapter 9

Advanced Joins

147

D
RA
FT

Contents

1 The Shape of Data . 149

2 Revenue over time & Advanced Joins . 151

2.1 First Value . 152

2.2 Most common value by group . 156

2.3 Cumulative Sum . 158

2.4 Rolling 90 day Calculation . 160

2.5 Cohorted Monthly Revenue . 161

148

D
RA
FT

1 The Shape of Data

• Up to this point we have taken the data given to us as a given: The columns and rows are what they
are. However, it is often useful to reshape the data by interchanging rows and columns for other
purposes. For example, consider the following two tables:

Table 9.1: Example of wide data: house wide

owner name NoBedroomHouse1 NoBedRoomHouse2 CostHouse1 CostHouse2

Rick 3 2 250000 125000
Harry 2 3 250000 125000
James 1 125000
Lenka 3 450000

Table 9.2: Example of long data: house long

owner name HouseNo BedRoom Cost

Rick 1 3 250000
Rick 2 2 125000

Harry 1 2 250000
Harry 2 3 125000
James 1 1 125000
Lenka 1 3 450000

• We would characterize the first table as being “wide” and the second as being “long.” While both
tables contain the same information depending on the application one shape can be easier to use
than the other. Consider the following two questions:

1. What is the average cost of a person’s second house?

select avg(CostHouse2) as avg_cost from cls.house_wide;

avg_cost

125000

select avg(Cost) from cls.house_long where HouseNo = 2;

avg

125000

2. What is the average cost of any house?

149

D
RA
FT

select
(sum(CostHouse1) + sum(CostHouse2))

/ (count(CostHouse1) + count(CostHouse2)) as avg_cost
from cls.house_wide;

avg_cost

220833

select avg(Cost) as avg_cost from cls.house_long;

avg_cost

217500

• Looking at the examples above you can see that, even if the case of these simple statistics different
data shapes can make a big difference. This is especially important when exporting data to another
program.

• We can use GROUP BY and CASE statements to reshape data from long-to-wide:

select
owner_name
, max(case when HouseNo = 1

then BedRoom else null end) as NoBedroomHouse1
, max(case when HouseNo = 2

then BedRoom else null end) as NoBedroomHouse2
, max(case when HouseNo = 1

then Cost else null end) as CostHouse1
, max(case when HouseNo = 2

then Cost else null end) as CostHouse2
from

cls.house_long
group by 1;

owner_name nobedroomhouse1 nobedroomhouse2 costhouse1 costhouse2
------------ ----------------- ----------------- ------------ ------------
Rick 3 2 230000 125000
Lenka 3 450000
James 1 125000
Harry 2 3 250000 125000

• We can use JOIN and UNION ALL to move between wide-to-long:

150

D
RA
FT

select
lhs.owner_name
, lhs.houseNo
, case

when houseNo = 1 then nobedroomhouse1
when houseNo = 2 then nobedroomhouse2
else null end as nbr

, case when houseNo = 1 then costhouse1
when houseNo = 2 then costhouse2
else null end as ch

from
(select distinct owner_name, 1 as houseNo from cls.house_wide

union all
select distinct owner_name, 2 as houseNo from cls.house_wide) as lhs

LEFT JOIN
cls.house_wide

using(owner_name)
where case

when houseNo = 1 then nobedroomhouse1
when houseNo = 2 then nobedroomhouse2

else null end is not null;

owner_name houseno nbr ch
------------ --------- ----- ------
James 1 1 125000
Rick 1 3 250000
Lenka 1 3 450000
Harry 1 2 250000
Rick 2 2 125000
[...]

• These constructs – wide vs. long are important to be able to swap between. Other programming
languages often have commands like “pivot”, “reshape”, “rollup” or “crosstab” that generate data
in different forms, sometimes with aggregations occurring.

2 Revenue over time & Advanced Joins

• In this section we consider a common application for reshaping data and that is calculating business
statistics from transaction data.

• Consider the following dataset which contains information on a business. This contains transaction
information where each row represents a particular event. In this case, the event under consideration
is the purchase of special soap bars. There are two types of transactions: single bars and double bars
while there are two types: “Unit” which represents a one-off transaction and “Sub” which represents
a subscription.

• A very common task when analyzing transaction data is understanding the revenue generated by a
customer over time. This number (sometimes called LTV or ARPU) is based on “cohorts” of users,
or defined groups of users with similar characteristics.

• Using the above data, how would we calculate the average amount spent by each customer?

151

D
RA
FT

Figure 9.1: Trans table, 1,063,491 rows

orderid userid trans type locale trans dt units coupon months amt

0 1 Double bar Unit U.S. 2016-05-09 2 39.98
1 2 Single bar Unit U.S. 2018-07-09 3 35.97
2 2 Single bar Unit U.S. 2018-08-25 1 11.99
3 2 Single bar Unit U.S. 2018-02-16 1 11.99
4 3 Single bar Unit U.S. 2016-02-28 4 47.96
5 4 Double bar Sub Canada 2018-03-09 5 25 2 74.96
6 4 Double bar Sub Canada 2018-05-09 5 25 2 74.96
7 5 Single bar Sub Canada 2016-01-05 4 35 2 31.17
8 6 Double bar Unit U.S. 2017-04-13 2 39.98
9 6 Double bar Unit U.S. 2016-07-28 4 79.96

select
sum(amt) / count(distinct userid) as amtPerUser

from cls.trans;

amtperuser

69.4199

2.1 First Value

• Let’s say that we were interested in understanding how relative countries monetized, how would we
calculate the amount per user for each country? In other words, if we defined the cohort based on
where a user lives, how would the countries compare?

select
locale
, sum(amt) / count(distinct userid) as amtPerUser

from
cls.trans

group by 1;

locale amtperuser
-------- ------------
Canada 63.2709
Mexico 72.5456
U.S. 62.5774

• What happens if a user moves? How is the average amount per country affected if users can move?
How should we handle calculating the average amount per user per country? We would probably
want to take the first one that a user appears in:

152

D
RA
FT

select
new_locale
, sum(amt) / count(distinct lhs.userid) as amtPerUser

from
(select

min(trans_dt) as mindt, userid
from

cls.trans
group by 2) as lhs

join
(select

userid, locale as new_locale, trans_dt
from

cls.trans) as rhs
on

lhs.mindt = rhs.trans_dt
and lhs.userid = rhs.userid

left join
cls.trans

on lhs.userid = trans.userid
group by 1;

new_locale amtperuser
------------ ------------
Canada 69.3196
Mexico 106.897
U.S. 65.8775

Take a look at how the query works. This is an example of identifying a “first value” of a customer.
In this case we first identify the column that we are interested in ordering by, identifying the row of
interest and then re-joining to the original data based on that row.

• What is the total amount spent by customers by first purchase type (subscription vs. unit sale)? In
order to do this we must identify what the first purchase was for each user:

153

D
RA
FT

select
lhs.userid, trans.type

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

userid type
-------- ------

4 Units
6 Units
7 Sub
10 Sub
21 Units

[...]

What if we a user can make multiple purchases in a day – What do we do in this case? Lets assume
that we want to prioritize Subscriptions over Units, so that if a user makes multiple purchases in a
day that they are flagged as subscribers:

154

D
RA
FT

select
lhs.userid
, max(case when trans.type = 'Sub' then 1

else 0 end) as subscriber_flag
, min(firstdt) as firstdt

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

group by 1;

userid subscriber_flag firstdt
-------- ----------------- ----------

84925 0 2018-05-10
165533 0 2018-10-12
162195 0 2018-11-14
47051 0 2016-03-06
161180 1 2016-01-18

[...]

• Now that we have identified the type of user, we then need to re-remerge that back onto the data to
get the rest of the information that we need:

155

D
RA
FT

select
subscriber_flag
, count(distinct outerLHS.userid) as numusers
, sum(amt) as totalamt
, sum(amt) / count(distinct outerLHS.userid) as avg

from
(select

lhs.userid
, max(case when type = 'Sub' then 1

else 0 end) as subscriber_flag
, min(firstdt) as firstdt

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

group by 1) as outerLHS
left join cls.trans
using(userid)
group by 1;

subscriber_flag numusers totalamt avg
----------------- ---------- ----------- -------

0 379309 2.40611e+07 63.434
1 194980 1.5806e+07 81.0648

2.2 Most common value by group

• Another very common task is to find the most common value for a particular group. For example,
lets say that we want to figure out what the most common value is among a particular sub group.

• For example, what is the most common order amount (dollars) for each country?

156

D
RA
FT

select
locale, amt, count(1)

from
cls.trans

group by 1,2
order by 3 desc;

locale amt count
-------- ----- -------
U.S. 39.98 65523
U.S. 23.98 64606
U.S. 59.97 51018
U.S. 35.97 50809
U.S. 19.99 34005
[...]

• Looking at the query above we can see that the most common amount for the US is 39.98, while in
Canada and Mexico the amounts are 25.99 and 17.98 respectively. We now want to write a query
which identifies just those three values. To do this we need to take this table and join it on itself.
Lets look at the following query:

select lhs.locale, lhs.amt, lhs.ct
from

(select locale, amt, count(1) as ct from cls.trans
group by 1,2) as lhs

left join
(select locale, amt, count(1) as ct from cls.trans
group by 1,2) as rhs

on lhs.locale = rhs.locale and lhs.ct <= rhs.ct
group by 1,2,3
having count(rhs.*) = 1;

locale amt ct
-------- ----- -----
Canada 25.99 24411
Mexico 35.97 21847
U.S. 39.98 65523

• This query works by exploding the dataset via the left join and then collapsing it down along all the
left hand side variables. The join itself only matches those counts from the left hand side which are
less than or equal to those on the right hand. In other words, this creates a row numbering based on
the original count! If you want to see this, run the previous query while removing the final GROUP
BY and HAVING.

• This technique can be used to also find the least common value (swapping the inequality to a greater
than) or even the second or third highest value (how would this be done?)

157

D
RA
FT

2.3 Cumulative Sum

• Another common, difficult query to write is to write a cumulative sum, which adds up all values
previous to and including the current row. We need to use the same technique as in the previous
examples, but this time use the trans dt field to help us order the columns:

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, amt, trans_dt from cls.trans) as lhs

left join
(select userid, amt, trans_dt from cls.trans) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09 23.98
2 12.99 2018-08-25 12.99
3 43.16 2017-03-05 43.16
3 43.16 2017-04-05 86.32
4 59.95 2016-02-28 59.95

[...]

• What if there were multiple values on a particular day?

• In the case of multiple days you the above query will actually generate data since the merge is not
unique on each side! This is bad – the sum of the amount of money should be conserved, but if we
generate rows the number will actually increase. So how would we get around this? We can sum up
by date to make sure that each row is unique by date:

158

D
RA
FT

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as lhs

left join
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09 23.98
2 12.99 2018-08-25 12.99
3 43.16 2017-03-05 43.16
3 43.16 2017-04-05 86.32
4 59.95 2016-02-28 59.95

[...]

By doing this aggregation we now avoid any creating any data.

• What is we wanted to do the above, but not include the current date? To do this we modify the join
condition:

159

D
RA
FT

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as lhs

left join
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt > rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09
2 12.99 2018-08-25
3 43.16 2017-03-05
3 43.16 2017-04-05 43.16
4 59.95 2016-02-28

[...]

2.4 Rolling 90 day Calculation

• What happens when we move into a new locale? If we calculate the average revenue using the ways
described above then any new country will look terrible because it is simply younger than the other
countries.

• To get rid of this issue we always cohort users by when they begin a service. This allows us to compare
apples-to-apples, rather than biasing our analysis toward those cohorts which have had more time to
matriculate within the system.

• Lets say that we wish to do a rolling calculation – say I want to calculate the average transaction
size for the first three months for each customer?

160

D
RA
FT

select lhs.userid, lhs.trans_dt, lhs.amt, sum(rhs.amt)
from

(select userid, sum(amt) as amt, trans_dt
from cls.trans

group by 1,3) as lhs
left join

(select userid, sum(amt) as amt, trans_dt
from cls.trans

group by 1,3) as rhs
on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt

and lhs.trans_dt <= rhs.trans_dt + 90
group by lhs.userid, lhs.trans_dt, lhs.amt;

userid trans_dt amt sum
-------- ---------- ----- -----

1 2016-05-09 23.98 23.98
2 2018-08-25 12.99 12.99
3 2017-03-05 43.16 43.16
3 2017-04-05 43.16 86.32
4 2016-02-28 59.95 59.95

[...]

2.5 Cohorted Monthly Revenue

• For plotting purposes we often want to break down the revenue over time, by the cohort or install
date.

• In the following example, we calculate this by month of first transaction and then we return the
results in a wide format. Why would we return this data in a wide format? Because this allows us
to plot it fairly easily.

161

D
RA
FT

select
cohort::date
, count(distinct userid) as numusers
, sum(case when trans_dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end) as mon_0_amt

, sum(case when trans_dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end) as mon_1_amt

, sum(case when trans_dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end) as mon_2_amt

from
cls.trans as lhs

left join
(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as rhs

using(userid)
GROUP BY 1;

cohort numusers mon_0_amt mon_1_amt mon_2_amt
---------- ---------- ----------- ----------- -----------
2016-01-01 21302 891314 68182 132567
2016-02-01 19503 819087 65729.4 125490
2016-03-01 20339 850657 67757.5 130519
2016-04-01 19571 819085 65591.1 124968
2016-05-01 19408 812544 65243.4 125081
[...]

• If we wanted to do this long, we could do the following. Note that by making the data long, we don’t
need to have an artificial monthly cut-off:

162

D
RA
FT

select
rhs.cohort::date
, rhs2.newusers
, 12* (DATE_PART('year', trans_dt::date) - DATE_PART('year', rhs.cohort))
+ (DATE_PART('month', trans_dt::date) - DATE_PART('month', rhs.cohort)) as numMonths
, sum(amt) as revenue

from
cls.trans as lhs

left join
(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as rhs

using(userid)
left join

(select count(distinct userid) as newusers, cohort
from

(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as innerrhs

group by 2) as rhs2
on rhs.cohort = rhs2.cohort
GROUP BY 1,2,3

cohort newusers nummonths revenue
---------- ---------- ----------- ---------
2016-01-01 21302 0 889046
2016-01-01 21302 1 63285.4
2016-01-01 21302 2 131443
2016-01-01 21302 3 27301.3
2016-01-01 21302 4 69052.8
[...]

Annoyingly, look at what we had to do to get the number of new users within each cohort into the
resulting data!.

163

D
RA
FT

164

