
D
RA
FT

Data Management
OR

GETTING PUNCHED IN THE FACE BY SQL AND PANDAS

BY

NICHOLAS ROSS, PHD

PROFESSOR OF DATA SCIENCE
UNIVERSITY OF CHICAGO

© 2020-2023 All Rights Reserved

Cover Art By: Megan Carlsen

Version: 2023-08-22 21:45:36

D
RA
FT

Contents

Introduction and Errata i

Relational Databases

1 Rows and Columns 1

1 What is a Relational Database . 3

2 Selecting Columns . 6

3 WHERE: Filtering rows . 7

4 Null . 9

5 ORDER BY and LIMIT . 11

6 Column Numbering . 16

7 Where are we: A Note on Scope . 17

2 Basic Manipulations 19

1 Types . 21

2 Renaming a Column . 23

3 Basic Mathematical Manipulations, ABS and LEAST/GREATEST 24

4 Queries without a FROM Clause and Singletons . 28

5 String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM and CONCAT . . . 29

6 ROUND and Changing Types (CAST) . 33

7 CAST and changing types . 33

3 Subqueries, Distinct & Case 41

1 Query Evaluation Order: SELECT and WHERE . 43

2 Comparisons: BETWEEN, LIKE and ILIKE . 45

3 CASE: Conditional Logic . 47

4 The DISTINCT Operator . 52

5 Subqueries (IN, ANY, ALL) . 55

6 Correlated Subqueries . 58

4 Database Internals: Transactions 63

1 REDO / COMBINE NEXT SECTIONS . 65

2 Table Creation and Deletion . 65

3 Database Operations: CRUD . 65

4 Creating Tables, Constraints and Deleting tables . 66

5 Altering Tables . 68

6 Inserting, Copying, Updating and Deleting . 68

7 Transactions and ACID . 69

8 Isolation Levels in Relational Databases . 73

9 Why do we care (NoSQL)? . 78

ii

D
RA
FT

10 NoSQL . 80

11 Transaction Implementations [TBD] . 81

5 Aggregations 83

1 Introduction to MTA data set . 85

2 GROUP BY clause . 86

3 Column numbering syntax . 91

4 Aggregates and CASE Statements . 93

5 Named Subqueries . 95

6 Dates and Types 101

1 Date Types . 103

2 Date Functions . 104

3 Hard GROUP BY problems . 110

7 Averages 115

1 The Trouble with Averages . 117

2 HAVING . 119

3 COALESCE and NVL . 120

8 Joins 123

1 Joins . 125

2 UNION and UNION ALL . 132

3 Best Practices when Combining Tables . 134

4 Intermediate Joins . 136

4.1 Aggregations on-self . 136

4.2 Cross Joins for missing values . 137

5 Statistical Analysis in SQL . 138

9 Advanced Joins 147

1 The Shape of Data . 149

2 Revenue over time & Advanced Joins . 151

2.1 First Value . 152

2.2 Most common value by group . 156

2.3 Cumulative Sum . 158

2.4 Rolling 90 day Calculation . 160

2.5 Cohorted Monthly Revenue . 161

10 Analytic Functions & CTE’s 165

1 Analytic Functions . 167

2 Using Analytic Functions with Transaction Data . 174

3 Common Table Expressions (“CTE”) . 176

4 CTEs with the transaction data . 178

11 Database Internals: Performance Evaluation 181

1 Normalization . 183

2 Views . 185

3 Information Schema . 189

4 Performance Considerations . 190

5 Index . 194

6 Distributed Systems and the CAP Theorem . 195

D
RA
FT

12 Extensions [TBD] 199

1 More Advanced Joins . 204

2 OLAP: Cube and Rollup . 210

3 Schemas . 210

4 Keys . 210

5 Data Exploration Strategies . 210

6 Query Strategies . 210

13 Interview Hints 211

1 Interview Hints . 212

2 Example Interview #1 . 216

3 Example Interview #2 . 218

4 Example Interview #3 . 220

5 Example Interview #4 . 221

Pandas

14 Introduction 223

1 What is Pandas . 225

2 Data structures . 226

3 Selecting Columns and Rows . 231

4 Column Types Conversion . 237

5 Dealing with NaN . 237

6 Choosing the largest and smallest values . 239

7 Manipulating Data & Method Chaining . 240

8 Indexes: Creating and Dropping . 244

9 Views and Copies . 246

15 More Manipulations and Types 251

1 Sorting DataFrames . 253

2 Dealing with Duplicates . 256

3 Using Type specific functions . 258

3.1 Dates . 258

3.2 Strings . 260

4 CASE style statements and the “isin” operator . 264

5 Regex Pattern Matching . 265

16 Aggregations 269

1 Introduction to the MTA dataset . 271

2 Simple Aggregations . 271

3 GroupBy Objects . 274

4 Advanced Index / Multiindex . 279

5 If not indexes... 285

6 Indexing with aggregations, a big Gotcha . 286

17 Joins 289

1 Helpful Table / Review . 291

2 Merging data in Pandas . 292

3 Complex Join Conditions . 294

4 Stacking Data . 294

D
RA
FT

5 Lags and Leads . 296

6 Apply, map and applymap: Advanced Transformations . 297

18 Window Functions 301

1 Window Functions in Pandas . 303

2 Some gotchas . 307

3 Reshaping Data: Transpose, Stack and Unstack . 308

4 A Bunch of stuff to clean up . 312

5 Combining with the original DataFrame . 312

6 Moving the Window . 316

7 Pivot / Melt . 316

Appendix

Appendix A Data Dictionaries 317

1 Introduction . 318

2 Iowa Fleet data . 318

3 NY MTA Data . 319

4 Daily Stock Data: s2010 and s2011 . 321

5 Annual Fundamental Financial information: fnd . 322

6 Soap Transaction Data . 325

Appendix B Connecting SQL to Python or R 327

1 Connecting to any database: ODBC and JDBC . 327

2 Connecting only to PostgreSQL . 327

Appendix C Assignments 329

1 HW #0A: PostgreSQL Installation . 330

2 HW #0B: Pandas Installation . 331

3 HW #0C: MS CAPP Installation instructions . 332

4 HW #1A: Basic SQL Querying . 333

5 HW #1B: Basic Pandas . 335

6 HW #2A: Basic Functions . 337

7 HW #3A: Subqueries . 339

8 HW #3B: Subqueries in Pandas . 342

9 HW #4A: Aggregation . 345

10 HW #4B: Aggregation in Pandas . 347

11 HW #5A: Aggregate Functions and Dates . 349

12 HW #5B: Aggregate Functions and Dates . 351

13 HW #6A: SQL Joins (I) . 353

14 HW #6B: Pandas Joins (I) . 356

15 HW #7A: SQL Joins (II) . 358

16 HW #7B: Pandas Joins (II) [TBD] . 360

17 HW #8AO: SQL Window Functions: [TBD] . 362

18 HW #8A: SQL Window Functions . 364

19 HW #8B: Pandas Window Functions . 365

20 BART Project . 367

21 HW #5AO: Info Schema and Price-Volume Relationship [TBD] 370

Appendix D Example Exams 373

D
RA
FT

1 2023 CAPP Databases Final A . 374
2 2023 CAPP Databases Final B . 380
3 2023 CAPP Databases Midterm A . 386
4 2023 CAPP Databases Midterm B . 390
5 2017 SQL Final . 394
6 2018 SQL Final . 403
7 2019 Exams . 414
8 USF’s student table . 433
9 FF Sales Example . 440
10 The Sales Rollup . 447
11 Sales Example I . 450
12 Sales Example II . 455

D
RA
FT

Introduction and Errata

i

D
RA
FT

D
RA
FT

Introduction & Errata

Thank you for your interest in learning Data Management via SQL and Python. The material in these
lecture notes covers the vocational aspects of learning these tools in a systematic and consistent man-
ner.

Thank you for your interest in learning SQL! At the end of this course, you will be familiar with SQL
and comfortable using it in a variety of real-world situations. While we directly use PostgreSQL in the
notes, nearly all of the syntax presented is compatible with alternative SQL implementations. In those
cases where there are compatibility issues, we try to call them out and address them.

Neither Pandas or SQL is difficult, but like learning any other language it requires time and practice. The
purpose of these notes and problems are not to be a readable book, but instead a set of notes which are
both a reference and guide. The majority of the learning that occurs is not within the text, but within the
problem sets and their solutions.

Each module within this text is designed to be a (roughly) one hour lecture. At different levels and
experience it is possible for some to run short and others to run long. This course has been taught in as
little as 7 weeks to masters level students and taken as long as an entire semester at the undergraduate
level. Dependencies between different modules are fairly obvious and quite a bit of the more technical
material can be treated as an extension (specifically Modules 4, 10, 12 and 13 and easily skip-able).

The course material is designed to be amenable to a few different environments. It has been taught at the
undergraduate level, undergraduate level as well as a free-standing executive certificate. While the primary
learning objectives are the same in each of these environments there are (obviously) different expectations
around this course at each of these levels.

Undergraduate

At the undergraduate level this has been taught as a semester long course which was paired with an applied
machine learning section. When teaching at the undergraduate level students were provided with access
to a cloud-based relational database, with limited permissions, that contained the databases used in this
course.

The coursework in these notes was paired with a group project and research paper write-up. Students
were required to load their data into a database and then created a set of jupyter notebooks and Python
libraries to access the data and execute on their own research plan and agenda. Groups of students then
did final presentations and long-form write-ups.

Graduate

At the graduate level this has been taught as both a once-a-week, 7-week long introduction to SQL as
well as a twice a week quarter length course covering both SQL and Pandas. In the former situation only

iii

D
RA
FT

the core modules regarding SQL syntax were covered while the later included all information presented in
these notes.

When teaching at the graduate level, the raw data was provided to the students with the expectations that
they would be able to load it into their own SQL (local) instances and work from there. Homework problems
are lightly graded and quizzes are given each week in order to assess current knowledge retention.

Executive Certificate

This course material was also taught as an Executive Certificate in a once-a-week, 3 hours per week, 7
week long format. During each week, save the first and last, students were given a short self-assessed quiz.
An hour long lecture was then done followed by working on problems from the assignments with the goal
to finish the “first five” for the sections covered.

When teaching in this format, only the core SQL syntax was covered and students were provided access
and credentials to a cloud-based server which contained the data for the course.

D
RA
FT

Errata and WIPs

This document is a work in progress and contains quite a few known issues. This preface contains known
issues and places where improvements are required.

Overall

1. Remove every reference to Module and change to chapter.

2. Fix the interview notes.

3. DDL

4. Categorical Data

5. Add a section to the start of the Pandas regarding “state” and how, unlike SQL, there is a current
“state” of a DataFrame. E.g. row numbers matter a lot.

6. Vector DB Discussion: https://www.ethanrosenthal.com/2023/04/10/nn-vs-ann/

SQL

1. Rewrite cast section. Currently confusing.

2. Queries with out a from clause and discussion of select 1 put at start mod 2.

3. Add to the start of the book https://www.amazingcto.com/postgres-for-everything/

4. Simple correlated subquery example. Current example is far too complex.

5. Rewrite NoSQL section adding information about a vector and graph databases:

• Look at: https://www.theregister.com/2023/03/08/great_graph_debate_wednesday/

6. Add a resources section to the introduction which contains information on different books to consider.

• https://postgrespro.com/community/books/internals

7. Online PostgresSQL explainer: https://explain.dalibo.com/

8. Add to performance consideration section. Discussion on the extreme case of super wide tables and
how it effects performance: https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/

9. Add more examples of aggregation with case statements.

10. Add more formality to the discussion on what is returned and how it can be used in table vs. scalar.

11. https://carlineng.com/?postid=sql-critique#blog

12. Use MTA data and add hour to create timestamp in the date/time section. Add more date/time
examples to date and time section, including intervals.

13. Language around analytic functions and LTV incorrect and needs to be fixed.

14. Check GSN and Zynga Dates. Add photos from Zynga as well as their MySQL solution.

Pandas

1. Add rank aggregation.

2. In section #1 the way that value counts and column selection occurs is awkward. Maybe change the
ordering to move value counts to after column selection.

https://www.ethanrosenthal.com/2023/04/10/nn-vs-ann/
https://www.amazingcto.com/postgres-for-everything/
https://www.theregister.com/2023/03/08/great_graph_debate_wednesday/
https://postgrespro.com/community/books/internals
https://explain.dalibo.com/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://carlineng.com/?postid=sql-critique#blog

D
RA
FT

3. Add reindex to index discussion in pandas. Overall discussion of muulti-index and reindex needs to
be updated.

4. Move loc not accepting NaN to first module

5. Add example for duplicated

6. Date stuff needs to be redone, both as index (additional section) and as regular/type discussion.

7. MTADF comes out of nowhere in the module 2. When is it first introduced?

8. Other resources to look into:

• Effective Pandas https://store.metasnake.com/effective-pandas-book

• https://betterprogramming.pub/pandas-illustrated-the-definitive-visual-guide-to-pandas-c31fa921a43

• copy warning: https://stackoverflow.com/questions/32573452/settingwithcopywarning-even-when-using-locrow-indexer-col-indexer-value

9. day name vs. weekday name

10. https://www.practicaldatascience.org/html/views_and_copies_in_pandas.html

11. Add a short section on creating simple dataframes with dictionaries or lists

12. Move applymap map and apply to the next module and then take all the slice stuff and move it to
the module with the groupby object.

13. Cuts / bins

14. iterrows

15. Any / All

16. Pivot

17. Add a section on analyzing the transaction data using Window Functions. Specifically, mimic the
functions in the advanced joins.

18. HW #8B needs work, add more.

19. Loading and Saving Data

20. Time Series stuff

21. There are some questions in the HW about correlation, just go over this.

https://store.metasnake.com/effective-pandas-book
https://betterprogramming.pub/pandas-illustrated-the-definitive-visual-guide-to-pandas-c31fa921a43
https://stackoverflow.com/questions/32573452/settingwithcopywarning-even-when-using-locrow-indexer-col-indexer-value
https://www.practicaldatascience.org/html/views_and_copies_in_pandas.html

D
RA
FT

Chapter 1

Rows and Columns

1

D
RA
FT

Contents

1 What is a Relational Database . 3

2 Selecting Columns . 6

3 WHERE: Filtering rows . 7

4 Null . 9

5 ORDER BY and LIMIT . 11

6 Column Numbering . 16

7 Where are we: A Note on Scope . 17

2

D
RA
FT

1 What is a Relational Database

• A database is a collection of any data:

– Could be text files, a list of names, phone numbers, audio files or images.

• This is quite broad – what makes a database Relational?

– Cheap Answer: A database is relational if it follows the Relational Data Model

– Longer Answer: The Relational Model is a system of storing and organizing data proposed by
Edgar Codd in the 1960’s and 70’s. Codd proposed a set of 12 rules.1 Any database system
which follows these rules has a number of important features:2

• Codd’s 12/13 Rules:

0. The foundation rule: For any system that is advertised as, or claimed to be, a relational data
base management system, that system must be able to manage data bases entirely through its
relational capabilities.

1. The information rule: All information in a relational data base is represented explicitly at
the logical level and in exactly one way – by values in tables.

2. The guaranteed access rule: Each and every datum (atomic value) in a relational data base
is guaranteed to be logically accessible by resorting to a combination of table name, primary
key value and column name.

3. Systematic treatment of NULL values: NULL values (distinct from the empty character
string or a string of blank characters and distinct from zero or any other number) are supported
in fully relational DBMS for representing missing information and inapplicable information in
a systematic way, independent of data type.

4. Dynamic online catalog based on the relational model: The data base description is
represented at the logical level in the same way as ordinary data, so that authorized users can
apply the same relational language to its interrogation as they apply to the regular data.

5. The comprehensive data sublanguage rule: A relational system may support several
languages and various modes of terminal use (for example, the fill-in-the-blanks mode). However,
there must be at least one language whose statements are expressible, per some well-defined
syntax, as character strings and that is comprehensive in supporting all of the following items:

– Data definition.

– View definition.

– Data manipulation (interactive and by program).

– Integrity constraints.

– Authorization.

– Transaction boundaries (begin, commit and rollback).

6. The view updating rule: All views that are theoretically updatable are also updatable by
the system.

1Like a good computer scientist, his rule list starts at zero, so there are actually 13 rules.
2These descriptions below were copied from Wikipedia, which I assume copied from the original paper.

3

D
RA
FT

7. Possible for high-level insert, update, and delete: The capability of handling a base
relation or a derived relation as a single operand applies not only to the retrieval of data but
also to the insertion, update and deletion of data.

8. Physical data independence: Application programs and terminal activities remain logically
unimpaired whenever any changes are made in either storage representations or access methods.3

9. Logical data independence: Application programs and terminal activities remain logically
unimpaired when information-preserving changes of any kind that theoretically permit unim-
pairment are made to the base tables.4

10. Integrity independence: Integrity constraints specific to a particular relational data base
must be definable in the relational data sublanguage and storable in the catalog, not in the
application programs.

11. Distribution independence: The end-user must not be able to see that the data is distributed
over various locations. Users should always get the impression that the data is located at one
site only.

12. The nonsubversion rule: If a relational system has a low-level (single-record-at-a-time) lan-
guage, that low level cannot be used to subvert or bypass the integrity rules and constraints
expressed in the higher level relational language (multiple-records-at-a-time).

• While there are many ways that these rules could be executed, the modern “Relational Database” is
quite standard. On the language side, SQL is used as the primary programming language and a set
of objects, discussed below, are used to conform to the rest of the rules.5

Figure 1.1: Database Objects

• Relational databases consist of the following objects:

– A tuple, or row, is a single observation, like you would find in Excel.

– An attribute of a tuple is a column and is defined by both a name and type.

– A relation or table is a collection of rows and their attributes. It is comparable to a worksheet
in Excel. Importantly, tuples are not ordered in a relation or, to state it alternatively, row
order is arbitrary.

3The physical level consists of the physical storage of the data. Things like compression type, adding or removing a new
hard drive or changing the directory that the database is stored in are considered “Physical Level”.

4The logical level consists of the concept level logic sitting on-top of the physical layer. This includes adding and subtracting
columns, changing an index or otherwise modifying how the information is stored without making underlying changes to the
data in the database.

5While there is chatter about the “exact” specification of what an RDMS is and whether modern database systems actually
follow the rules – that conversation is not of interest to practitioners.

4

D
RA
FT

– A collection of relations is a schema and can be compared to an Excel workbook with multiple
worksheets. Taking the Excel analogy further, just as it is straightforward to access data on
different sheets, but within the same Excel file, it is straightforward to access data in a database
that is within the same schema.

– A collection of schemas is a database. A database can be thought of a directory full of Excel
files, each with their own set of worksheets. Continuing the Excel analogy: while data can be
accessed between different Excel files, it can be difficult; that same principle applies to databases:
accessing data in two different schemas is not trivial.

• Modern relational databases use “dot” notation when referring to items in a database:

database.schema.table.column

Since rows are unnamed in relational databases there is no method to reference a row.

• The data stored in a relational database is strongly typed. Each column of data is defined as a certain
type (think integer or string) which is defined by the operations that can act on it. For example, you
can multiply numbers, but you cannot do the same to strings.

• Relational Databases work well when you have structured data or data with a high-degree or or-
ganization. For example, information such as “age”, “first name”, “last name” and “occupation”
are easily stored in relational databases. Data without consistent structure, such as those collected
from multiple sources or those with complex structures, such as the information contained within a
personal history, tend to best stored in other structures.

• Relational databases are accessed using “Structured Query Language” (“SQL”) and pronounced
“Sequel”.

• Importantly, relational databases are boring. They are designed to be warehouses of data, but NOT
to do data analysis. The most common use case for relational databases is that they store information
that is too large to put on a single computer. When a user or process wishes to do analysis, they
connect to the database and extract only the information necessary to do their work. In other
words, the database is useful for storing and accessing data, but not for doing any data science or
analytics. In SQL there are no functions for “logistic regression”, “random forrest”, “anova” or any
other common standard statistical techniques.

• Relational databases are generally client-server systems. In order to access data within a database
the server must be up and running and a client needs to be configured to interact with it. This can
happen in many different ways:

– Both the client and server can be running on the same physical computer.

– The server can be in the cloud and a user may be anywhere in the world.

– The server could be in a storage room or under a desk and the client could be somewhere in the
office.

• The parameters required to connect to most SQL systems include a (1) a host, (2) a username, (3) a
password (4) a port to connect on and (5) the database name. The combination of these four items
is referred to as a “connection string”.

• When we refer to different SQL variants, such as MS-SQL, Vertica or MySQL, we are talking about
the program that is run on the server, not on the client. There are clients that can connect to multiple
server variants and there are clients which are specific to ones.

5

D
RA
FT

• There are many clients for SQL. One you may consider is DataGrip, by the makers of PyCharm, so if
you like using that interface, use it. Others that I tend to recommend include PopSQL and Postico.6

• SQL is a declarative programming language. In a declarative language, the programmer describes
the output while not explicitly detailing each step to create that output. The opposite of declarative
programming is imperative programming which focuses on how a program should operate in a step-
by-step manner.7

2 Selecting Columns

• Iowa Cars: The first dataset that we will consider is a database of car registrations from Iowa.
Details about this dataset, including how to load it and its data dictionary can be found in Appendix
A, Section 2.

• Let’s begin with the following query template:

SELECT ______________ <- Comma separated List of Columns
FROM ______________ <- Table From which columns are selected from
; <- Sometimes necessary

• The query begins with the SELECT clause which states which columns of data we are interested in
having our database return.

• The FROM clause tells the database which table to look for the data .

• Why is the “;” only “sometimes” necessary? It depends on your SQL client. The semi-colon represents
the end of a statement and some SQL clients will automatically place one. The use of a semi-colon
is highly recommended!

• Let’s say that we have the cls.cars table structure and we want to select the “CountyName” column.
We would write the following query:

select CountyName from cls.cars;

which would return a single column and all 41,202 from the table.

• SQL ignores hard returns, additional white space and is generally case insensitive8 so we could write
the above query like this:

SeLeCT
CountyNAMe FRom

CLS.cARS;

and it would return the same data as above.

• Selecting multiple columns is straightforward:

select countyname, annualfee
from cls.cars;

6This site https://wiki.postgresql.org/wiki/PostgreSQL_Clients contains an up to date list of clients which
are usable in PostgreSQL.

7Languages such as Python and R are generally considered imperative.
8There are a few exceptions to case insensitivity, but they are outside the scope of this class.

6

https://wiki.postgresql.org/wiki/PostgreSQL_Clients

D
RA
FT

which will return two columns and all rows.

• To return all columns, we use an “*”:

select * from cls.cars;

which will return all rows and all columns from the database.

• Be careful with the above command, SQL servers are powerful and assume you know what you are
doing. If you ask for all the data from a large table... it will give you all of the data.

3 WHERE: Filtering rows

The select operator chooses which columns to return to the client while the WHERE filters out rows based
on their contents.

• The WHERE syntax uses standard Boolean style logic to evaluate row-inclusion on a row-by-row
basis.

• The WHERE clause occurs after the FROM clause, such as in this example:

select countyname, vehicletype
from cls.cars
WHERE vehicletype = 'Semi Trailer';

which which returns 1,683 rows.

• We can select all columns which fulfill a certain criteria:

select * from cls.cars where vehicletype = 'Semi Trailer';

which returns all columns with this vehicle type.

• Strings themselves, such as ‘Semi Trailer’, are case-sensitive, so the query

select countyname
from cls.cars
where vehicletype = 'Semi TRAiler';

will return zero rows.9

• When selecting strings we use single quotes. Double-quotes should be reserved for referencing
database objects (such as tables, columns and schemas). Most databases allow users to define objects
with special characters, such as spaces. We use double-quotes in these situations to refer to these
objects.10 For example, if a database had a column with a space in it, such as “user name” then to
select that column would require using double quotes:

select "user name" from table;

9Surprisingly, this is not true for all variants of SQL. MySQL, which may be the most popular variant of SQL, is case-
insensitive by default.

10Personally, I strongly believe that special characters should be avoided when defining database objects, but it sometimes
occurs.

7

D
RA
FT

• With numbers, we can use any standard comparison operator (=, >,<,<=, >=) to select rows, such
as in the below,

select * from cls.cars where registrations > 10000;

returns 1,248 rows.

• There are two ways to state inequality: “! =” or “<>”.

• To combine multiple criteria we use “AND” and “OR” clauses:

select

*
from

cls.cars
where

registrations > 1200
and countyname = 'Wright';

returns 70 rows, while

select * from cls.cars
where

registrations > 1200
and registrations <= 3000
and countyname = 'Wright';

returns 21 rows, or all information from Wright county where the registrations are between 1,200 and
3,000 (inclusive). A more complicated example,

select * from cls.cars where
(
(registrations > 1200 and registrations <= 3000)
or
(registrations > 4000 and registrations <= 4200)
)
and countyname = 'Wright';

returns 24 rows.

• Parenthesis dictate the order of operations, so this query returns all rows from Wright County with
between 1,200 and 3,000 registrations or 4,000 and 4,200 registrations. To understand this query,
consider the following potential values, with how they would evaluate in the above condition:

Countyname Registrations Yes or No

Wright 2000 Yes
Wright 4100 Yes
Right 3500 No
Wright 5000 No

8

D
RA
FT

4 Null

• Relational databases use 3-value logic. Unlike some logic systems which solely consist of True and
False, 3-value logic systems include a third value: Null. Null is sometimes sometimes called “un-
known” or “missing”, but be careful about this phrasing as different data sources may represent those
concepts separately.

• The truth tables describes how the three value logic behaves. Tables 1.2, 1.3 and 1.4 demonstrate
how Null is handled in a range of situations – the key things to keep in mind is that Null does not
evaluate Null, it is it’s own, separate value.

| AND | TRUE | FALSE | NULL |
|-------+--------+---------+--------|
TRUE	TRUE	FALSE	NULL
FALSE	FALSE	FALSE	FALSE
NULL	NULL	FALSE	NULL

Figure 1.2: AND 3-value logic

| OR | TRUE | FALSE | NULL |
|-------+--------+---------+--------|
TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	NULL
NULL	TRUE	NULL	NULL

Figure 1.3: OR 3-value logic

| NOT | |
|-------+-------|
TRUE	FALSE
FALSE	TRUE
NULL	NULL

Figure 1.4: NOT 3-value logic

• Most conditional expressions are predicated on “Success” being “True”, which means that Null tends
to behave like “False”. For example, in a WHERE clause, if the resulting expression evaluates Null
it is not returned. So this query, which returns Null for every row, will yield zero rows:

select * from cls.cars where null;

• Null thus represents a special class of data in the database. Consider the following query, which
returns 3 rows of data:

SELECT
year, registrations, annualfee

FROM
cls.cars

WHERE
registrations > 217000
and year < 2010;

year registrations annualfee
------ --------------- -----------

2006 218883
2005 218235
2008 217073 24160802.0

9

D
RA
FT

• The first two rows in “annualfee” are null. Let’s put a further restriction on this columns and see
what happens:

SELECT
year, countyname, registrations, annualfee

FROM
cls.cars

WHERE
registrations > 217000
and year < 2010
and annualfee < 25000000;

year countyname registrations annualfee
------ ------------ --------------- -----------

2008 Polk 217073 24160802.0

This query will return 1 row (the third row from the previous query). In particular, Null annual fees
are not evaluated to be true. Just to be clear, the only row that will be returned by this query, of
the three that were returned will be the third row which did not have a Null annualfee.

• The query above only returned the non-Null annualfee rows when we put a restriction that annualfee
had to be less than 25,000,000. Let’s put a restriction in the opposite direction, this time only
returning rows greater than 25,000,000:

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee >= 25000000
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

This query returns zero rows!

• So, if we have no restriction on annualfee it returns 3 rows. If we restrict annualfee to above
25,000,000, it returns 1 row and if we restrict annualfee to below 25,000,000 then it returns 0 rows.
What happened? A key relational databases feature is the following:

NULL behaves like FALSE in WHERE CLAUSES!

• In the previous example, for the first and second row the database evaluated NULL ≥ 25,000,000
and said that this is not true. The database also evaluated Null < 25,000,000 and found it to be
false. In other words, Null evaluates False in a boolean expression.

• Since Null behaves like False we need to use a different operator to compare it; this operator is IS:

10

D
RA
FT

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee IS NULL
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

2006 Polk 218883
2005 Polk 218235

which will return the two rows with a Null annualfee.

• To remove NULL values we use the IS NOT expression:

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee is not NULL
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

2008 Polk 217073 24160802.0

which will return only the row with a non-Null annualfee value.

• What about this query?

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee = NULL;

Ha! Trick question: this will return zero rows because Null always evaluates False!

5 ORDER BY and LIMIT

• To sort the data that is returned by a query we use an ORDER BY clause:

11

D
RA
FT

select
registrations, *

from
cls.cars

order by registrations ASC;

registrations year countyname motorvehicle vehiclecat vehicletype [...]
--------------- ------ ------------ -------------- ------------ ------------ [...]

1 2015 Poweshiek Yes Truck Tractor/Truc [...]
1 2014 Dallas Yes Truck Tractor/Truc [...]
1 2014 Jefferson Yes Truck Tractor/Truc [...]
1 2013 Tama Yes Truck Truck Tracto [...]
1 2011 Wapello Yes Truck Truck Tracto [...]

[...]

will return every column of data in the database ordered by registrations from low-to-high (Ascend-
ing).

• Data can also be sorted “Descending” – from high-to-low:

select
registrations, countyname, year

from
cls.cars

order by registrations DESC;

registrations countyname year
--------------- ------------ ------

218975 Polk 2015
218883 Polk 2006
218235 Polk 2005
218211 Polk 2014
217540 Polk 2016

[...]

Running this query will return the Null annualfee rows first! Because annualfee Nulls are sorted as
if they are larger than non-Nulls, this implies that descending order returns them before non-Null
values.

• ORDER BY also works with character columns:

12

D
RA
FT

select
countyname

from
cls.cars

order by countyname desc;

countyname

Wright
Wright
Wright
Wright
Wright
[...]

will return the data, sorted by countyname ascending. For characters, DESC is reverse alphabetical
order, while ASC is alphabetical order. PostgreSQL sorts character data in a case insensitive manner.

• Under the default sort order (Ascending), Null values are last, which means that they are treated as
if (a) they are larger than non-Nulls, when numbers and (b) alphabetically last.

• The default sort order, if neither ASC or DESC is specified is ASC.

• Multiple sort orders can be combined:

select
countyname, year

from
cls.cars

order by countyname desc, year asc;

countyname year
------------ ------
Wright 2005
Wright 2005
Wright 2005
Wright 2005
Wright 2005
[...]

will return data sorted by countyname first, and then within common countyname’s sorted by year
(ascending).

• In order to limit the number of rows returned to the client we use the LIMIT command. For example,
the following query:

13

D
RA
FT

select

*
from

cls.cars
limit 10;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- --------- -- [...]

2008 Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [...]

[...]

returns every column in the cars table, but only 10 rows. Note that this is not the first 10 rows, it
is an arbitrary 10 rows. If you run the query again you may get a different set of rows!

• We can combine LIMIT with the rest of our commands:

select
registrations, annualfee

from
cls.cars

where
countyname = 'Scott'

limit 100;

registrations annualfee
--------------- -----------

31626 1700000.0
3 376.0

1779 553072.0
172 40480.0
2972 135942.0

[...]

will return 100 rows of data. Note that limit is evaluated after the where command, so as long as
there are 100 rows with countyname = ‘Scott’, this will return 100 rows.

14

D
RA
FT

The LIMIT clause is not present in all versions of SQL. Other SQL variants use alternative
syntax to limit the rows returned. The following table highlights those differences and presents
a query using each version:

Variant Syntax Example

MySql LIMIT select * from cls.cars order by annualfee asc limit
10;

MS-SQL TOP select top 10 * from cls.cars order by annualfee
asc;

Older Oracle rownum select * from (select * from cls.cars order by an-
nualfee asc) where rownum <= 10;

• A common use case for ORDER BY and LIMIT is to return the top X of something, like the query
below, which returns the five largest registration values:

select
registrations

from
cls.cars

order by registrations desc
limit 5;

registrations

218975
218883
218235
218211
217540

• Some other examples: Top 15 rows ordered by registrations:

select

*
from

cls.cars
order by registrations desc
limit 15;

year countyname motorvehicle vehiclecat vehicletype tonnage r [...]
------ ------------ -------------- ------------ ------------- --------- --- [...]

2015 Polk Yes Automobile Automobile [...]
2006 Polk Yes Automobile Automobile [...]
2005 Polk Yes Automobile Automobile [...]
2014 Polk Yes Automobile Automobile [...]
2016 Polk Yes Automobile Automobile [...]

[...]

• Top-15 rows, countyname only, where annualfee is not equal to zero.

15

D
RA
FT

select countyname
from cls.cars
where annualfee <> 0
order by registrations desc limit 15;

countyname

Polk
Polk
Polk
Polk
Polk
[...]

This query demonstrates that (1) we can order by columns that are not selected and (2) we can
remove both NULL and zero annualfees.11

6 Column Numbering

• In this section we introduce an SQL feature that make your life easier: using column number order
in an ORDER BY clause.

• Instead of putting the column name, we can use the column number to specify how we should order
the rows:

select
registrations
, countyname

from
cls.cars

where
annualfee <> 0

order by 1 desc
limit 15;

registrations countyname
--------------- ------------

218975 Polk
218211 Polk
217540 Polk
217073 Polk
216792 Polk

[...]

In the query above the “1” in the ORDER BY refers not to the number 1, but to the first column
position, which in this case is “registrations”. We can also use ASC, DESC and multiple sort orders
using this notation:

11Since NULL <> is always false this removes all the null annualfee values.

16

D
RA
FT

select
registrations
, countyname

from
cls.cars

where
annualfee <> 0

order by 2, 1 desc;

registrations countyname
--------------- ------------

4247 Adair
4137 Adair
4109 Adair
3916 Adair
3768 Adair

[...]

The data from this example is sorted by countyname first and then, within each county sorted by
the number of registrations. There are only a few operators that allow for column numbering. The
ORDER BY operator is one of them.

• The downside of using column numbering syntax is that if you change the select statement, such as
adding or subtracting a column the query will not raise an error, but will no longer return the same
data. For this reason a number of organizations avoid using this syntax and require full column name
expressions at all times.

7 Where are we: A Note on Scope

• A common issue that new SQL users have is how much detail to include when writing a query. For
example, if we assume that the database name is “sql class”, then the following two queries will
return the same data, though they look very different:

select sql_class.cls.cars.year from cls.cars;

and

select year from cls.cars;

• We call this issue scope. Scope is the region of a query where a particular name is valid. The standard
way that we write queries is to include the schema and table in the FROM clause, but only include
the column names in the rest of the query, unless those column names are not fully specified.

• Note that the table was written as “cars” and not “cls.cars” or something even more specific. This
may return an error for you depending on how your “search path” is set. The search path represents
where the database looks, by default, for tables. If you are working with data that is not in your
search path, you will need to include the schema name, otherwise the database will return an error.
In the notes for this class we will ignore issues surrounding this.12

12More information here: https://www.postgresql.org/docs/current/static/ddl-schemas.html

17

https://www.postgresql.org/docs/current/static/ddl-schemas.html

D
RA
FT

18

D
RA
FT

Chapter 2

Basic Manipulations

19

D
RA
FT

Contents

1 Types . 21

2 Renaming a Column . 23

3 Basic Mathematical Manipulations, ABS and LEAST/GREATEST 24

4 Queries without a FROM Clause and Singletons . 28

5 String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM and CONCAT . 29

6 ROUND and Changing Types (CAST) . 33

7 CAST and changing types . 33

20

D
RA
FT

Up to this point we have refrained from transforming any of the data that is being returned in our queries.
In this module we being working on manipulating the data that is being returned via functions, renaming
and other methods. Importantly, none of what we are doing changes the underlying data; it simply
transforms what is being returned to the client.

Before manipulating, however, we need to understand data within a relational database and how it is
represented. In particular, we need to understand “types”.

1 Types

• Relational databases are “strongly” typed, meaning that there are strict rules around what operations
can be performed on what data.

• As in other computer languages, types determines both what operations are available and how oper-
ations behave as a function of the data contained therein.

• In Relational Databases, columns are typed and set when a table is created. A column can only be
a single type.

• Relational databases support a variety of different data types. In this section we will discuss the
most commonly used ones, a hierarchy of which can be found in Figure 2.1.

Common Data Types

JSON Types

JSONB

JSON

Enum Types

Dates and Times

Interval

TimeStamp

Time

Date

Strings

Arbitrary length “text”

Fixed length “char”

Variable length “varchar”

Numbers

Fixed precision “Numeric’

Floating precision “Float”

Integer “Int”

Figure 2.1: Common relational database data types

21

D
RA
FT

Numbers

There are three “styles” of numbers:

1. Integer: These are whole numbers and there are actually 3 different types: smallint (2 bytes, can
store -32,768 to +32,767 (215)), int (4 bytes, can store -2,147,483,648 to +2,147,483,647 (231)) and
bigint (8 bytes, can store -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 (263)).

2. Float: A floating point number is an inexact, variable precision numeric type, usually coming in two
flavors: real (4 bytes, 1E-37 to 1E+37 with a precision of at least 6 decimal digits) and double (8
bytes, 1E-307 to 1E+308 with a precision of at least 15 digit).

3. Numeric: A numeric has a user-defined fixed precision (like 2 decimal places). They vary in size
and type depending on the amount of precision required. An example use of fixed precision is storing
information about money; there is a fixed cut-off (penny) of precision.

In practice database administrators tend to stick to using integers and floats with an occasional numeric
types.

Strings

The three most common string types used are:

1. Variable length: The “varchar” type is used for variable length strings, but with a maximum
number of specified characters. For example, a varchar(10) can contain any string, as long as the
number of characters is less than or equal to 10.

2. Fixed length: The “char” type is used for fixed length strings. For example, a char(10) can contain
any string, as long as the number of characters is less than or equal to 10. The difference between
char and varchar is that this type always reserves space for additional characters, up to the the max,
while a varchar does not. So, to store the names “Nick”, “John” and “Reggie” as a varchar(6) would
take (approximately) (4 + 4 + 6 = 16 bytes) while storing those same names as a char(6) would take
(approximately) 6 + 6 + 6 = 18 bytes.

3. Arbitrary length: The “text” type (sometimes called blob) is used for strings of arbitrary length.
For example, if you wanted to store yelp comments you would use a text field, since the comments
can be any length. Text fields are generally avoided when another type can be used due to storage
efficiency.

Enum

• For categorical data databases use what is called an “enum” or “enumerated” type.

• This type stores the data as an integer which also has a “map” that maps those numbers to specific
values.

• The classic version of this is gender. Consider a survey with the following options:

No. Chars Enum Value

Woman 5 1
Man 3 2
Transgender 11 3
Non-binary/non-conforming 25 4
Prefer not to respond 21 5

• In this example, storing the data as an enum would save a ton of space over storing it as text.

22

D
RA
FT

• The downside is increased complexity and issues with comparisons (do you compare based on the
map or on the text value)?

• All modern databases have a version of this, but we won’t get too much into the details in this course.

JSON

• Modern databases usually have two different options for storing JSON information: a raw represen-
tation and a binary representation.

• The raw representation is just a text blob that, by calling it “JSON” you get access to special
functions only available to JSON objects, specifically functions around keys and values.

• The JSONB representation is a further parsed, binary representation of the JSON data. JSONB
data (usually) is slower to load into the database due to the additional type conversions, but faster
to do lookup operations on.

• All modern databases support JSON path (sometimes called JSONpath) syntax for accessing oper-
ators. This will be discussed later.

Dates

We will hold off on discussing dates until Module 6.

2 Renaming a Column

• The first thing we will learn to do is change the name of tables and columns that are being returned.

• We sometimes want to rename columns. To do this, we use the AS operator:

select
registrations as reg2

from
cls.cars;

reg2

5
198
5020
366
2507

[...]

The query above will return a single column, with the name reg2.

• We can also use it to rename tables, though this won’t be useful for a few weeks!

23

D
RA
FT

select
registrations as reg2

from
cls.cars as c2;

reg2

5
198
5020
366
2507

[...]

• We can actually just skip the AS completely, thought it isn’t recommended since it can make the
query more difficult to read.

select
registrations reg2

from
cls.cars c2;

reg2

5
198
5020
366
2507

[...]

3 Basic Mathematical Manipulations, ABS and LEAST/GREATEST

• If, instead of selecting a column directly from the table, we put down a single value, then that value
will be repeated for each row returned.

• For example, consider the following query:

24

D
RA
FT

select
1 as v1, 2 as v2, 'Nick' as name, vehicletype

from
cls.cars;

v1 v2 name vehicletype
---- ---- ------ --------------

1 2 Nick Bus
1 2 Nick Moped
1 2 Nick Truck
1 2 Nick Travel Trailer
1 2 Nick Truck

[...]

• Note that the data is repeated once for each row and no rows are being generated.

• We can also manipulate the data that is being returned on a row-by-row basis by using functions
within the select.

• For example, we can do basic math functions:

select
registrations + 10 as reg2
, registrations

from
cls.cars

reg2 registrations
------ ---------------

15 5
208 198
5030 5020
376 366
2517 2507

[...]

Note that what this does is create a synthetic column of the number ten (repeated for each row) and
then adds that to the column “reg”. The result is that each entry in “reg2” is equal to “reg” plus 10.

• All standard mathematical operations (+,−, /, ∗) are all supported and math can be done between
columns, such as:

25

D
RA
FT

select
registrations + 10 as reg2
, annualfee * annualfee as annualfee_sq
, registrations

from
cls.cars;

reg2 annualfee_sq registrations
------ ---------------- ---------------

15 462400 5
208 1.921e+06 198
5030 9.60083e+10 5020
376 3.39039e+08 366
2517 1.7873e+10 2507

[...]

• What if we fail to rename the column with AS? The database will generate a column name for us:

select
registrations + 10
, annualfee * annualfee
, registrations

from
cls.cars;

?column? ?column? registrations
---------- ---------------- ---------------

15 462400 5
208 1.921e+06 198
5030 9.60083e+10 5020
376 3.39039e+08 366
2517 1.7873e+10 2507

[...]

In this case the database has no idea what to name the column so calls it ?column?.

• SQL also has more advanced functions, many of which are similar to Excel. For example, the absolute
value function (ABS), which returns the magnitude of a number without regard for its sign, can be
used to return a modified column:

26

D
RA
FT

SELECT
abs(registrations - 1000) as abs_reg, registrations

FROM
cls.cars;

abs_reg registrations
--------- ---------------

995 5
802 198

4020 5020
634 366

1507 2507
[...]

returns two columns from cars. The first is the absolute value of 1,000 subtracted from registrations
and the second is the registrations number.

• As with the other SQL functions we have seen, these can be used within a WHERE clause:

SELECT

*
FROM

cls.cars
WHERE

abs(registrations - 1000) <= 20;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ --------------- --------- - [...]

2005 Hardin Yes Motorcycle Motorcycle [...]
2013 Mahaska No Trailer Regular Trailer [...]
2008 Boone No Trailer Travel Trailer [...]
2016 Marion No Trailer Semi Trailer [...]
2012 Webster No Trailer Semi Trailer [...]

[...]

which returns the 231 rows where the number of registrations are between 980 and 1,020.

• The functions LEAST and GREATEST do exactly what they say – they return the highest and lowest
value in a particular set of observations. Note that LEAST and GREATEST only work within a single
row:

27

D
RA
FT

select
countyname
, abs(registrations - 100) as c1
, abs(registrations - 30) as c2
, registrations
, least(abs(registrations - 100), abs(registrations - 30)) as calc_1
, greatest(abs(registrations - 100), abs(registrations - 30)) as calc_2

from cls.cars
where registrations >= 64 and registrations <= 66
and countyname = 'Wright';

countyname c1 c2 registrations calc_1 calc_2
------------ ---- ---- --------------- -------- --------
Wright 36 34 64 34 36
Wright 34 36 66 34 36
Wright 35 35 65 35 35
Wright 36 34 64 34 36
Wright 36 34 64 34 36
[...]

4 Queries without a FROM Clause and Singletons

• SQL allows for queries without a FROM. When doing this, no columns can be referenced, but the
query will be executed as a single expression. This is handy when running tests, such as if we didn’t
understand the ABS function:

select abs(-5) as calc;

calc

5

We can do this with almost any SQL function, including mathematical operations:

select 5 * 10 as calc;

calc

50

• If a query returns a single value, which we will call a singleton in this class, then we can treat that
value as what it returns. The code below, for example, returns twice the largest registrations:

select 2 * (select registrations from cls.cars order by 1 desc limit 1) as calc;

calc

437950

28

D
RA
FT

• We can also use this in a WHERE clause:

select registrations
from

cls.cars
where

registrations >
10*(select registrations from cls.cars order by 1 asc limit 1)

order by registrations asc
limit 10;

registrations

11
11
11
11
11

[...]

This query will return the registrations in cls.cars which are 10 times more than the smallest
value. It will only return the smallest 10 of those rows.

5 String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM
and CONCAT

• The string operators LEFT and RIGHT behave just as in Excel: they take the left or right characters
of a string. For example:

select left('THIS STRING', 4) as left_4;

left_4

THIS

will return ‘THIS’ since it is the four left most letters of the string in question.

• Both the LEFT and RIGHT commands take the same inputs: a string and the number of characters
to cut:

29

D
RA
FT

select
countyname
, left(countyname, 4) as left_4
, right(countyname, 4) as right_4

from
cls.cars;

countyname left_4 right_4
------------ -------- ---------
Ida Ida Ida
Jasper Jasp sper
Harrison Harr ison
Palo Alto Palo Alto
Adair Adai dair
[...]

• Two other string functions that behave similarly to Excel are LOWER and UPPER, which return a
lowercase and uppercase version of a string column:

select
countyname
, lower(countyname) as lc
, upper(countyname) as uc

from
cls.cars;

countyname lc uc
------------ --------- ---------
Ida ida IDA
Jasper jasper JASPER
Harrison harrison HARRISON
Palo Alto palo alto PALO ALTO
Adair adair ADAIR
[...]

will return the countyname (with capital casing, such as “Adair”) and also a lower- and upper-case
version of the countyname.

• Note that we can nest functions:

30

D
RA
FT

select
lower(left(countyname, 4)) as ll4
,countyname

from
cls.cars;

ll4 countyname
----- ------------
ida Ida
jasp Jasper
harr Harrison
palo Palo Alto
adai Adair
[...]

• the LENGTH command returns the length of a string.1 For example:

select
countyname, length(countyname) as len

from
cls.cars;

countyname len
------------ -----
Ida 3
Jasper 6
Harrison 8
Palo Alto 9
Adair 5
[...]

• The TRIM command can be used to remove letters from a string. The default behavior is to remove
spaces, but it is possible to use it for other things.

select ' aaaa' as val1, trim(' aaa ') as trm;

val1 trm
------ -----
aaaa aaa

Importantly the leading and trailing spaces have been removed from the string. Note that the
commands LTRIM and RTRIM do what they are expected to do – trim from only a single side.

• To put two strings together, similar to an “&” in Excel, we can use a concatenation operator, “||”.
For example, the following query will return a single column with the countyname twice.

1In MS-SQL this is LEN, not LENGTH.

31

D
RA
FT

select
countyname || countyname as str_calc

from
cls.cars;

str_calc

IdaIda
JasperJasper
HarrisonHarrison
Palo AltoPalo Alto
AdairAdair
[...]

• We can also put a constant into the string concatenation to modify it, as in the following example:

select
'County Name = ' || countyname as str_calc

from
cls.cars;

str_calc

County Name = Ida
County Name = Jasper
County Name = Harrison
County Name = Palo Alto
County Name = Adair
[...]

Different variants of SQL use different operators for string concatenation:

SQL Variant Syntax Example

MySQL concat() select concat(col1, col2) from tablename;
MS-SQL + select col1 + col2 from tablename;

• A final useful command for parsing strings is LENGTH, which returns the length of a string. We can
use this with right and left to uppercase the last letter of a string:

32

D
RA
FT

select
left(countyname, length(countyname) - 1)

|| upper(right(countyname, 1)) as lastUpper
from

cls.cars;

lastupper

IdA
JaspeR
HarrisoN
Palo AltO
AdaiR
[...]

which returns a list of countynames with both the first and last letter upper-cased!

6 ROUND and Changing Types (CAST)

7 CAST and changing types

• It can be the case that you want to switch data types and then do operations on them.

• To do this we use the “CAST” operator, which takes a column and a target data type as its inputs.
Unlike other functions, however, the word “as” is used to split the inputs. Consider the following
examples:

select 125.5 + 4 as ans;

ans

129.5

select '125.5' + 4 as ans;
ERROR: invalid input syntax for integer: "125.5"
LINE 1: select '125.5' + 4 as ans;
ˆ

select cast('125.5' as float) + 4 as ans;

ans

129.5

The first query returns the expected answer while the second errors out because it tries to add a
string and an integer. The third query uses the cast operator to change the data type.

33

D
RA
FT

• Rather than using CAST PostgreSQL provides a double colon operator to do the same thing:

select '123.5'::float + 4 as ans;

ans

127.5

• Finally, keep in mind that PostgreSQL will attempt to do many conversions, even if you don’t
explicitly specify them. For example:

select '123' + 4 as ans;

ans

127

Surprisingly, the database is able to make this conversion and thus does the math correctly.

• One commonly used function is the ROUND command which rounds a number.

• Lets say that we wanted to get the annualfee and registrations rounded to the nearest 100.
In this case we could start by doing the following:

select
round(registrations, -2) as rounded_reg
, registrations

from
cls.cars;

rounded_reg registrations
------------- ---------------

0 5
200 198
5000 5020
400 366
2500 2507

[...]

As from the results above, the ROUND commands rounds numbers to the place specified in the integer
following the value to be rounded. In this example the rounding occurs to the −2 position which is
the hundreds place.

Moving to annualfee, we could write it as:

34

D
RA
FT

select
round(annualfee, -2) as rounded_af
, annualfee

from
cls.cars;

which would return:

ERROR: function round(double precision, integer) does not exist
LINE 4: , round(annualfee, -2) as rounded_af

ˆ
HINT: No function matches the given name and argument types. You might need to add explicit type casts.

Why does this return an error?!?!

The round command is type dependent. If you have an integer or a numeric type, the syntax is
ROUND(column, integer) where the integer determines where to round the value. If the
integer is positive, it will round to values after the decimal while negative integers in the ROUND will
return values rounded to places before the decimal, as in the example above. On the other hand,
floats (called “double precision” in the error) do not accept a second argument and will only round
to the nearest integer!

• So how do we handle rounding to the nearest hundreds for a float? There are two options: we either
transform the column to use the ROUND command on floats or we CAST the float as a different type
(either numeric or integer) and then use the available parameters therein.

• The first option:

select
round(registrations, -2) as rounded_reg
, registrations
, 100*round(annualfee/100) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

In the example above the column annualfee/100 is a floating point type which does not take an
additional argument in the function and instead just rounds to the nearest whole number. Since it’s
been divided by 100, this will return the number rounded to the nearest 100. We then multiply it
against 100 to get the original scale.

• The second option is to cast, or change the variables type, in a few different ways:

1. Use the CAST function We can use the CAST command in order to explicitly change the

35

D
RA
FT

type. The CAST command is a bit awkward syntactically, as can be seen below:

select
round(registrations, -2) as rounded_reg
, registrations
, round(cast(annualfee as int), -2) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

rather than using standard parameters, a more sentence like construction occurs.

2. Conversion with :: We can use :: to explicitly cast a variable from one type to another.
This is Postgres only!

select
round(registrations, -2) as rounded_reg
, registrations
, round(annualfee::int, -2) as rounded_af
, annualfee

from
cls.cars;

rounded_reg registrations rounded_af annualfee
------------- --------------- ------------ -----------

0 5 700 680
200 198 1400 1386
5000 5020 309900 309852
400 366 18400 18413
2500 2507 133700 133690

[...]

3. Implicit conversion: While not possible in every situation, Postgres will implicitly convert
between types when operators are applied. For example, if you multiply a float against an
integer, the result will be a float:

36

D
RA
FT

select
annualfee / 5.0 as af

from
cls.cars;

af

136
277.2

61970.4
3682.6
26738
[...]

In this case, annualfee has been converted from an integer to a float.

• There is a big “gotcha” when using implicit conversion – when doing it the database attempts to
determine which type you want if you aren’t careful you may end with an unanticipated result.
Consider the following:

• Look at what following returns, given that there are 659 rows where registrations is equal to 5:

select registrations / 10 as calc
from cls.cars where registrations = 5;

calc

0
0
0
0
0

[...]

• Why is this occurring? Because the database sees a query which divides two integers and thus
assumes that the result is also going to be an integer. Importantly – this isn’t rounding, it is simply
cutting off the value.

• We can use implicit methods of conversion in order to solve this. Consider the following:

37

D
RA
FT

select registrations *1.0 / 10 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

or

select registrations /10.0 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

or

select registrations::float /10 as calc
from cls.cars where registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

The first two solutions work because they introduce a number with a decimal component. When the
database attempts to do math between decimals and integers it presumes that the answer is going
to be decimal and we get the expected result. The third answer uses the “::” operator to convert the
integer into a floating point number.

There is one important difference between the first two solutions and the final solution. The final
solution converts the data into a floating point number, not a numeric type. As we will learn later,
these are not equivalent and there can be strong reasons to prefer one data type over the other.

38

D
RA
FT

• Finally, we could use the CAST function in order to complete this operation:

select
CAST(registrations as float)/10 as calc

from
cls.cars

where
registrations = 5;

calc

0.5
0.5
0.5
0.5
0.5

[...]

39

D
RA
FT

40

D
RA
FT

Chapter 3

Subqueries, Distinct & Case

41

D
RA
FT

Contents

1 Query Evaluation Order: SELECT and WHERE . 43

2 Comparisons: BETWEEN, LIKE and ILIKE . 45

3 CASE: Conditional Logic . 47

4 The DISTINCT Operator . 52

5 Subqueries (IN, ANY, ALL) . 55

6 Correlated Subqueries . 58

42

D
RA
FT

1 Query Evaluation Order: SELECT and WHERE

• Assume that we wanted to look at the registrations per dollar of annualfee for 4 Ton Truck Tractors
in Scott county. We could start with the following query:

select
year, registrations, annualfee

from
cls.cars

where
countyname = 'Scott'
and tonnage = '4 Tons'
and vehicletype = 'Truck Tractor';

year registrations annualfee
------ --------------- -----------

2010 1 0
2009 1 0
2007 1 5
2008 2 85

• To determine the registrations per annual fee, we could change the select statement to the following:

select
year, registrations::float/ annualfee as ratio

from
cls.cars

where
countyname = 'Scott'
and tonnage = '4 Tons'
and vehicletype = 'Truck Tractor';

which yields an error:

ERROR: division by zero

Unsurprisingly, rows with an annualfee equal to zero are causing this query to fail.

• To handle this we can remove those rows that cause this query to fail:

43

D
RA
FT

select
year, registrations::float/ annualfee as ratio

from
cls.cars

where
annualfee > 0
and countyname = 'Scott'
and tonnage = '4 Tons'
and vehicletype = 'Truck Tractor';

year ratio
------ ---------

2007 0.2
2008 0.0235294

which will return only the two rows where the division by zero is not an issue. Notice about this
query is that the WHERE clause is evaluated before the SELECT statement is evaluated.

• This allows the user to exclude observations that may generate problems before the SELECT statement
operates on them.

• An implication of this is that since SELECT is done after WHERE, things defined in the SELECT are
not available in the WHERE:

SELECT
year, annualfee::float / registrations as avg_fee

from
cls.cars

where avg_fee > 0;

ERROR: column "avg_fee" does not exist

Why did this happen? It happened because the column avg_fee isn’t defined at the time that the
WHERE clause is executed.

• The same logic applies to the FROM clause, which is evaluated first. Consider the following query,
which renames our table into something else.

select
renamed_table.*

from
cls.cars as renamed_table

limit 100;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- --------- -- [...]

2008 Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [...]

[...]

44

D
RA
FT

In this query the table has been renamed in the FROM clause and that naming is passed through to
the SELECT statement. If we were to instead try to reference cls.cars in the SELECT after the
renaming, an error will occur:

select
cars.*

from
cls.cars as renamed_table

limit 100;

ERROR: missing FROM-clause entry for table "cars"
LINE 2: cars.*

Once again this confirms that the FROM clause is evaluated before SELECT.

2 Comparisons: BETWEEN, LIKE and ILIKE

• Another common comparison operator is BETWEEN:

select

*
from

cls.cars
where

registrations between 2050 and 2100;

year countyname motorvehicle vehiclecat vehicletype tonna [...]
------ ------------ -------------- ------------- --------------------- ----- [...]

2011 Monroe Yes Multi-purpose Multi-purpose [...]
2010 Shelby No Trailer Small Regular Trailer [...]
2015 Ida Yes Truck Truck 3 Ton [...]
2013 Dubuque Yes Truck Truck 6+ To [...]
2010 Woodbury No Trailer Semi Trailer [...]

[...]

will return all columns from the table cars where registrations are between 2050 and 2100. Note that
this is equivalent to:

select

*
from

cls.cars
where

registrations >= 2050 and 2100 >= registrations;

year countyname motorvehicle vehiclecat vehicletype tonna [...]
------ ------------ -------------- ------------- --------------------- ----- [...]

2011 Monroe Yes Multi-purpose Multi-purpose [...]
2010 Shelby No Trailer Small Regular Trailer [...]
2015 Ida Yes Truck Truck 3 Ton [...]
2013 Dubuque Yes Truck Truck 6+ To [...]
2010 Woodbury No Trailer Semi Trailer [...]

[...]

45

D
RA
FT

In other words, BETWEEN is inclusive as it includes both end points.

• BETWEEN can also be used with strings, but be careful when doing so. In our cars database, for
example, there is a single county that begins with the letter ’R’ (“Ringgold”). If you run the
following query:

select

*
from

cls.cars
where

countyname between 'R' and 'R';

year countyname motorvehicle vehiclecat vehicletype tonnage reg [...]
------ ------------ -------------- ------------ ------------- --------- --- [...]

will return zero rows! BETWEEN is computed using alphabetical order and, since “R” is before
“Ringgold”, alphabetically, this means that it won’t be returned by this query. Instead, the following
query will return all rows with a countyname which begins with the letter ‘R’:

select

*
from

cls.cars
where

countyname between 'R' and 'S';

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- ------------- [...]

2011 Ringgold Yes Bus Bus [...]
2014 Ringgold Yes Truck Truck 6+ Tons Non-S [...]
2016 Ringgold Yes Moped Moped [...]
2011 Ringgold Yes Motorcycle Motorcycle [...]
2005 Ringgold Yes Motor Home Motor Home - B [...]

[...]

• Second note: alphabetical order PostgreSQL is case insensitive. If you sort the following data:

A B D E c f g h

the result will be:

A B c D E f g h

• To further match strings we can use LIKE and ILIKE which searches for specified patterns within a
string. Using LIKE without any special characters yields a simple equality comparison:

where countyname like 'Ringgold'

is equivalent to:

where countyname = 'Ringgold'

• ILIKE on the other hand is a case insensitive matching. In other words, the following where clauses

46

D
RA
FT

will return all rows from Ringgold county:

where countyname ilike 'ringgold'

where countyname ilike 'RINGgold'

• Both like and ilike allow for more complex pattern matching using percent sign (“%”) and underscore
(“ ”). The percent sign is used to match any string while the underscore matches a single character.
We call these types of characters “wildcards” and they allow users to create more complex matching
criteria. Continuing with the example of the county of “Ringgold”:

Clause Will Match Ringgold?

like ‘%inggold’ Yes
like ‘ring old’ No
ilike ‘ring old’ Yes
like ‘r%’ No
ilike ‘r%’ Yes
ilike ‘%ringgold%’ Yes

• Remember that Null presents as False, even with wildcard characters. If there was a column in a
table called “alwaysNull” which was Null in every row, the following:

where alwaysNull ilike '%'

would return zero rows.

• One difference between % and is that underscore requires a character to be there. For example, the
string ’ Ringgold’ will not match Ringgold while ’%Ringgold’ will match.

• Performance considerations: Be mindful when using LIKE and ILIKE as they are expensive for
the database to evaluate. When evaluating these expressions, the database moves from the first to
last character within each string attempting to determine if each row matches the criteria. Whenever
possible, minimize the use of wildcard characters.

3 CASE: Conditional Logic

• We have covered how to use a SELECT statement to manipulate columns. For example, we can easily
add numbers together or transform a string. An extension of this is to change columns conditionally.
To do this we use the CASE statement, which allows us to conditionally transform what the database
returns.

• In the Iowa cars data we may be interested in doing analysis comparing those rows with more than
100 registrations against those with less than 100 registrations. As an example, consider the following
query:

47

D
RA
FT

SELECT
CASE

WHEN registrations > 100 THEN 'BIG'
ELSE 'SMALL'

END as regSize
, *

from
cls.cars;

regsize year countyname motorvehicle vehiclecat vehicletype to [...]
--------- ------ ------------ -------------- ------------ -------------- -- [...]
SMALL 2008 Ida Yes Bus Bus [...]
BIG 2011 Jasper Yes Moped Moped [...]
BIG 2012 Harrison Yes Truck Truck 3 [...]
BIG 2015 Palo Alto No Trailer Travel Trailer [...]
BIG 2016 Adair Yes Truck Truck 3 [...]
[...]

This query will return all the columns in the database and one more column, with the name “regSize”
that takes the value of “BIG” or “SMALL” depending on if the number of registrations is greater
than 100.

• In the case of a Null value for registration it would fail the initial conditional and then be caught by
the

• The ELSE clause is optional. The query below provides an example without an ELSE clause:

select
case

WHEN registrations > 100 then 'BIG'
END as regsize

from
cls.cars;

regsize

BIG
BIG
BIG
BIG
[...]

In this case, the column regsize will have the value ‘BIG’ for registrations greater than 100. For
values of registration less than 100, the value in the column will be Null.

• The CASE statement is evaluated row-by-row.

• We can add additional criteria by using multiple WHEN arguments. For example, we may want to do
analysis on four different size criteria as can be seen in this query:

48

D
RA
FT

SELECT
CASE

WHEN registrations > 1000 THEN 'VERY VERY BIG'
WHEN registrations > 500 THEN 'VERY BIG'
WHEN registrations > 100 THEN 'BIG'
ELSE 'SMALL'

END as regSize
, *

from
cls.cars;

regsize year countyname motorvehicle vehiclecat vehicletype [...]
------------- ------ ------------ -------------- ------------ -------------- [...]
SMALL 2008 Ida Yes Bus Bus [...]
BIG 2011 Jasper Yes Moped Moped [...]
VERY VERY BIG 2012 Harrison Yes Truck Truck [...]
BIG 2015 Palo Alto No Trailer Travel Trailer [...]
VERY VERY BIG 2016 Adair Yes Truck Truck [...]
[...]

We only needed to include “>” signs because each of our inequalities excludes the previous. In other
words, when the database evaluates the above it checks the WHEN statements in order: it first checks
to determine if the number of registrations is greater than 1000, then if it is greater than 500, then if
it is greater than 100 and finally, only if all 3 of those criteria fail, will it assign the value of “SMALL”.

If the query was written this way:

SELECT
CASE

WHEN registrations > 500 THEN 'VERY BIG'
WHEN registrations > 1000 THEN 'VERY VERY BIG'
WHEN registrations > 100 THEN 'BIG'

ELSE 'SMALL'
END as regSize
, *

from
cls.cars;

regsize year countyname motorvehicle vehiclecat vehicletype to [...]
--------- ------ ------------ -------------- ------------ -------------- -- [...]
SMALL 2008 Ida Yes Bus Bus [...]
BIG 2011 Jasper Yes Moped Moped [...]
VERY BIG 2012 Harrison Yes Truck Truck 3 [...]
BIG 2015 Palo Alto No Trailer Travel Trailer [...]
VERY BIG 2016 Adair Yes Truck Truck 3 [...]
[...]

then zero observations would be classified as “VERY VERY BIG” since every row with registrations
greater than 1000 are also greater than 500.

• When using case statements we can use any statement that we would use in a WHERE clause, including
using AND and OR to create more complex Boolean statements:

49

D
RA
FT

select
case

when registrations > 500 and annualfee > 500 THEN 'Type 1'
when registrations >= 500 and annualfee < 499 THEN 'Type 2'
when registrations < 500 and annualfee > 500 THEN 'Type 3'
when registrations >= 500 and annualfee < 499 THEN 'Type 4'

else
'hasNulls'

END as regSize
, *

from
cls.cars

limit 1000;

regsize year countyname motorvehicle vehiclecat vehicletype to [...]
--------- ------ ------------ -------------- ------------ -------------- -- [...]
Type 3 2008 Ida Yes Bus Bus [...]
Type 3 2011 Jasper Yes Moped Moped [...]
Type 1 2012 Harrison Yes Truck Truck 3 [...]
Type 3 2015 Palo Alto No Trailer Travel Trailer [...]
Type 1 2016 Adair Yes Truck Truck 3 [...]
[...]

In the query above if there is a Null registration or annualfee then that row will fail the
Boolean clauses on part of the CASE statement, resulting in those rows being caught in the ELSE
condition.

• Note that you can use a CASE statement in a WHERE clause, though it uncommon to do so. What
does the following do?

select * from cls.cars
where

case
when registrations < 100 then 1
when registrations between 200 and 300 then 2
when registrations > 500 then 3 end = 2;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ --------------- --------- - [...]

2016 Van Buren Yes Truck Truck 4 Tons [...]
2009 Lucas Yes Truck Truck 4 Tons [...]
2015 Keokuk Yes Truck Truck 4 Tons [...]
2008 Decatur No Trailer Regular Trailer [...]
2009 Lee Yes Truck Truck 5 Tons [...]

[...]

• There is a second syntax for the CASE statement, which is not used as frequently. This second syntax
can only handle equality constraints against a single column. An example of this syntax can be shown
below where we use it to create a new columns which adjusts the annual fee paid by inflation.

50

D
RA
FT

select
case year

WHEN 2005 THEN annualfee * 1.053
WHEN 2006 THEN annualfee * 1.051
WHEN 2007 THEN annualfee * 1.05
WHEN 2008 THEN annualfee * 1.04
WHEN 2009 THEN annualfee * 1.038
WHEN 2010 THEN annualfee * 1.035
WHEN 2011 THEN annualfee * 1.03
WHEN 2012 THEN annualfee * 1.01
WHEN 2013 THEN annualfee

end as annualfeeInflation
from cls.cars;

annualfeeinflation

707.2
1427.58

312951

[...]

When using this syntax we first specify which column we are going to compare on (in this case that
column is year). For each row the year column is compared against the value after WHEN and, if that
conditional is true, the THEN clause is evaluated.

• A useful application of the CASE statement is dealing with divide by zero. Previously we had dealt
with division by zero problems by removing those rows using a WHERE clause. If, instead of removing
that row, we wish to keep it but return a different value we can use CASE:

select
case

when annualfee > 0 then registrations / annualfee
else null

end as regPerDollar
from

cls.cars;

regperdollar

0.00735294
0.142857
0.0162013
0.0198773
0.0187523

[...]

The annualfee values which are either Null or equal to zero will be caught by the case statement

51

D
RA
FT

and, rather than returning an error, the database will return a Null.

• We can use the CASE statement to implement the LEAST and GREATEST operator on two columns,
but will need to be careful about nulls. Consider the following example:

select
case when X >= Y then X else Y end as larg

from
tablename;

In this case, if X is Null, then Y is returned. However, if Y is Null the Null is returned, which is NOT
what we want. In to implement GREATEST (or LEAST) via a CASE statement we have to verify that
the variable is not Null, as the query below demonstrates:

select
case when Y is null or X >= Y then X else Y end as lrg

from
tablename;

In this case if Y is Null then X is returned, no matter the value in X while if X is Null then Y is
returned, no matter Y’s value.

4 The DISTINCT Operator

• The DISTINCT operator can be used in a number of ways in SQL. The first way that we will describe
is how it can be used is to remove duplicates from the data that is being returned.

• If we want to know what years are in the Iowa cars table we can run the following command:

SELECT DISTINCT year from cls.cars;

year

2013
2021
2015
2008
2010

[...]

which is a list of every distinct year in the table. We can combine this with the order by command
to see an ordered list of the years in the database:

52

D
RA
FT

SELECT DISTINCT
year

FROM
cls.cars

ORDER BY year;

year

2005
2006
2007
2008
2009

[...]

• When learning SQL, it helps to think of SELECT and SELECT DISTINCT as two different functions.
DISTINCT is not modifying a column, it is more fundamentally changing what is returned.

• DISTINCT is computationally expensive. Novice query writers often make the mistake of putting it
in queries when it is not required and causing the queries to be slower than necessary.

• Let us use the following dataset to understand how Nulls and multiple columns are handled. The table
“BillPaid” contains information from a credit card company. In particular, it contains information
about if a person paid their bill at the end of each month. The column paytype represents how the
Person paid their bill and is Null if a person did not pay. If a person didn’t pay, the amount is zero
to zero.

PersonID Month Paid paytype Amt

1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 NULL 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 NULL 0
3 3 0 NULL 0

Figure 3.1: “BillPaid” Table

• As before, we can use DISTINCT on a single column:

53

D
RA
FT

select distinct PersonID from cls.BillPaid;

personid

3
2
1

as well as on multiple columns:

select distinct PersonID, PayType from cls.BillPaid;

personid paytype
---------- ---------

3
3 Check
2
2 Visa
1 Visa

Note that this command does not create any data – only takes the unique entries by row. Also
demonstrated is that Null is handled as if it was its own, unique, value.

• A common error with DISTINCT is trying to sort on a column which is not in the SELECT. Consider
the following query:

select distinct PersonID from cls.BillPaid order by amt desc;

Looking at the table, we can see that PersonID #1 has a value equal to 100, which is larger than any
other value – so should it go first? At the same time, PersonID #2 has a value of 25, which is larger
than PersonID #1 in months 1 and 3, so should it be first? Since the database is not sure which to
do, it does something different: it responds with an error.

ERROR: for SELECT DISTINCT, ORDER BY expressions must appear in select list

• Importantly, DISTINCT and ORDER BY can be used at the same time, but only if the column being
sorted is the same one as the column being made distinct, as can be seen in the query below.

SELECT distinct amt from cls.BillPaid order by amt desc;

amt

100
25
15
10
0

54

D
RA
FT

5 Subqueries (IN, ANY, ALL)

• Up to this point, we have used SELECT and simple WHERE clauses to choose which rows and columns
to return in a query. Simple WHERE clauses allow us to choose rows based on other data within that
row, but not on information outside that row. In this section we will write subqueries to filter rows
based on data not present in that row. We will continue to use Table 3.1, the “Bill Paid” table.

Looking over this table, you can see that there are three people who had bills. To write a query
which identifies missing payments we could write the following query:

select

*
from

cls.BillPaid
where

Paid = 0;

personid month paid paytype amt
---------- ------- ------ --------- -----

2 2 0 0
3 2 0 0
3 3 0 0

Which will return three rows, two from person #3 and one from #2.

• Assume we want to analyze all the rows from people who have ever missed a payment. The WHERE
clause above will not work in this scenario since we need to know information about rows outside the
one being evaluated. In this case we use the IN clause and a subquery:

select

*
from

cls.BillPaid
where

personid IN (select personid from cls.BillPaid where paid = 0);

personid month paid paytype amt
---------- ------- ------ --------- -----

2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

[...]

The IN clause used with the WHERE is evaluated exactly as you would expect: for each row in the
table, the query determines if that countyname is in the list generated by the subquery. These types
of subqueries are called uncorrelated because nothing in the subquery references anything outside
that subquery.

55

D
RA
FT

• When using this syntax, the subquery needs to return a single column of data. Looking at the above
we can see that the subquery above satisfies this constraint.

• The opposite of IN is NOT IN, which only accepts rows do not match the contents of the subquery.
For example, the following would return only the rows associated with people who have never missed
a payment:

select

*
from

cls.BillPaid
where

personid NOT IN (select personid from cls.BillPaid where paid = 0);

personid month paid paytype amt
---------- ------- ------ --------- -----

1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15

• Note that the subquery syntax does not look at the name of the column within the subquery. For
example, the following query will work as well:

select

*
from

cls.BillPaid
where

personid IN (select personid as sillyColumnName
from cls.BillPaid where paid = 0);

personid month paid paytype amt
---------- ------- ------ --------- -----

2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

[...]

• Keep in mind that the reason we need to use this syntax is because we need information that is
outside of the current row to evaluate the current row. A simple WHERE clause can only access the
information in the current row.

• The IN clause can be used without a SELECT as a subquery:

56

D
RA
FT

select

*
from

cls.billpaid
where

personid in (1,2);

personid month paid paytype amt
---------- ------- ------ --------- -----

1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 0

[...]

In this case there is no official subquery – the query itself contains the data to be filtered on.

• An important consideration when writing subqueries is the use of DISTINCT in the subquery itself.
The IN operator verifies if a particular value is within a list. If the list has duplicates then the
verification process will take longer. In the above example, the subquery returns 3 values (2,3,3),
two of which are duplicates. When making the comparison, having duplicates in the subquery list
will result in an inefficient comparison. To avoid this, we generally add a DISTINCT operator to the
subquery:

SELECT

*
FROM

cls.BillPaid
WHERE

personid IN (select distinct personid from cls.BillPaid where paid = 0);

personid month paid paytype amt
---------- ------- ------ --------- -----

2 1 1 Visa 25
2 2 0 0
2 3 1 Visa 25
3 1 1 Check 10
3 2 0 0

[...]

This will yield a more efficient query. Because the dataset is small, the difference in this query will
be negligible, for larger datasets this change may be necessary for the query to run in a manageable
amount of time.

• There are two other operators that are used in a similar fashion, though I do not find myself using
them frequently, ANY and ALL, which are used in the following manner:

WHERE column [OPERATOR] ANY/ALL (SUBQUERY)

57

D
RA
FT

• For example, consider the following two examples:

SELECT *
FROM cls.BillPaid
where amt

<= ALL (select amt from cls.billpaid where personID = 1);

personid month paid paytype amt
---------- ------- ------ --------- -----

1 1 1 Visa 15
1 3 1 Visa 15
2 2 0 0
3 1 1 Check 10
3 2 0 0

[...]

SELECT *
FROM cls.BillPaid
where amt

<= ANY (select amt from cls.billpaid where personID = 1);

personid month paid paytype amt
---------- ------- ------ --------- -----

1 1 1 Visa 15
1 2 1 Visa 100
1 3 1 Visa 15
2 1 1 Visa 25
2 2 0 0

[...]

In the first example, only those rows where amt is less than all values from PersonID #1 (15,100,15),
are returned. This would return the 4 rows with amt = 0 and amt =10, this is equivalent to ≤ 15.
The second query, on the other hand, only checks to see if it less than a single value within that list,
so this is equivalent to ≤ 100, which returns all rows in the table.

6 Correlated Subqueries

• A correlated subquery references the outer query within the subquery. For example, consider the
following query:

58

D
RA
FT

select

*
from

cls.cars as A
where

vehicletype = 'Motorcycle'
and year <> 2010
and countyname in
(select

countyname
from

cls.cars as B
where

A.countyname = B.countyname
and B.year = 2010
and B.vehicletype = 'Motorcycle'
and A.registrations > B.registrations);

year countyname motorvehicle vehiclecat vehicletype tonnage r [...]
------ ------------ -------------- ------------ ------------- --------- --- [...]

2016 Jasper Yes Motorcycle Motorcycle [...]
2011 Ringgold Yes Motorcycle Motorcycle [...]
2013 Clayton Yes Motorcycle Motorcycle [...]
2013 Grundy Yes Motorcycle Motorcycle [...]
2016 Davis Yes Motorcycle Motorcycle [...]

[...]

This will return all motorcycle rows, for each county that have more registrations than that same
county’s registrations for 2010. For example, Lucas county has the following number of registrations
for each year, for motorcycles:

select
year
, registrations

from
cls.cars

where
countyname ='Lucas'
and vehicletype = 'Motorcycle'

order by 1;

year registrations
------ ---------------

2005 530
2006 586
2007 606
2008 592
2009 587

[...]

This statement will only evaluate positive in 2006 and 2007, the rows that have more registrations
than 2010. To furuther understand this query, think through each row as an item within a loop, with
the subquery being evaluated each time.

59

D
RA
FT

In Lucas, year 2005, for example, the subquery will look like :

(select
countyname

from
cls.cars as B

where
'Lucas' = B.countyname
and B.year = 2010
and B.vehicletype = 'Motorcycle'
and 530 > B.registrations);

countyname

This subquery will return Null since no countyname will match the constraints in the where clause.
Since it returns Null, the outer where clause evaluates False and 2005 is not returned.

• If we wanted to find all counties which increased the number of motorcycle registrations from 2005
to 2006 we could write the following query:

select
countyname

from
cls.cars as A

where
A.year = 2006
and A.vehicletype = 'Motorcycle'
and countyname in

(select countyname
from

cls.cars as B
where

year = 2005
and A.countyname = B.countyname
and B.vehicletype = 'Motorcycle'
and A.registrations > B.registrations);

countyname

Adair
Osceola
Madison
Worth
Hancock
[...]

• Correlated subqueries are costly computationally since the subquery is reevaluated for row, you
can think of them as FOR LOOPS in SQL. They are also incredibly difficult to read. Generally

60

D
RA
FT

speaking, they should be avoided. We will learn techniques for avoiding them later.

• There is one interesting case for correlated subqueries, which is identifying the “first row” of a
particular group. Consider the following query:

select
a.countyname, a.registrations

from
cls.cars as a

where
a.registrations =

(select
registrations

from
cls.cars as b

where
a.countyname = b.countyname

order by
b.registrations desc
limit 1)

Note that this query will take an incredibly long time to evaluate.1 It will return, for each county,
the largest number of registrations for a row. In other words, correlated subqueries can be used to
determine the first value for a particular row. This same technique can be used to determine the
maximum or minimum value of a particular column within subgroups. Later on we will learn much
smarter techniques for doing this.

1I stopped it after one minute so I’m not sure how long it takes in total.

61

D
RA
FT

62

D
RA
FT

Chapter 4

Database Internals: Transactions

63

D
RA
FT

Contents

1 REDO / COMBINE NEXT SECTIONS . 65

2 Table Creation and Deletion . 65

3 Database Operations: CRUD . 65

4 Creating Tables, Constraints and Deleting tables . 66

5 Altering Tables . 68

6 Inserting, Copying, Updating and Deleting . 68

7 Transactions and ACID . 69

8 Isolation Levels in Relational Databases . 73

9 Why do we care (NoSQL)? . 78

10 NoSQL . 80

11 Transaction Implementations [TBD] . 81

64

D
RA
FT

1 REDO / COMBINE NEXT SECTIONS

2 Table Creation and Deletion

• Up to this point we have glossed over the details of how tables and schemas are created. There are
a few reasons for doing this:

1. In professional settings it is relatively uncommon to be creating tables. By definition they are
created only once – as opposed to accessing them which can be done much more frequently.

2. The considerations for how a table is created are very specific to the database variant. Data
types are treated differently within different database.

– For example, in Postgres, there is no “fixed length string type”. Even if you define a column
as a CHAR, the database treats it as a VARCHAR. Other SQL variants do not follow this
same pattern and therefore the amount of space taken up by each column and its relative
efficiencies are different in different variants.

– These types of physical layer differences can mean that optimizations and best practices
that work on one database variant may not work on another.

3. On top of the the physical layer differences, variants also express different syntax in their creation
statements.

– Just like the rest of SQL, the core syntax displays is similar between variants. However, once
you step outside the basics of creating a table, the syntactical differences start increasing.

4. Last, but not least, questions regarding creating a table rarely appear in data science or data
analyst interviews.

• Given the above we won’t spend too much time understanding the syntax of creating a table, though
we will cover the important aspects involved.

• The basic syntax for creating a table follows the following form:

CREATE TABLE schema.table_name
(

column_1_name data_type,
column_2_name data_type,
column_3_name data_type

);

It is a pretty simple syntax overall – name and datatypes are the only two required arguments.

3 Database Operations: CRUD

There are four essential operations for any database which we abbreviate CRUD:

• Create: New data can be added to a database1

– CREATE: Create a table for data to be stored.

– INSERT: Put data into a table.

1Relational databases break up the process of data creation into two steps. The first is to create a container for the data
(via CREATE) and then second is to populate that table, using either a COPY or INSERT command.

65

D
RA
FT

– COPY: Bulk data loading operation.

• Read: Retrieve previously stored data.

– SELECT: Returns data to the client.

• Update: Previously stored data can be changed in a database.

– UPDATE: Changes already stored data.

– ALTER: Changes the structure of a table.

• Delete: Previously stored data can be removed

– DROP: Removes a database object

– DELETE: Removes data from a table

• Many databases, including newer versions of PostgreSQL include a command UPSERT, which is a
portmanteau of UPDATE and INSERT. UPSERT will insert a new row, unless that row is already
present, in which case it will update.

• This breakdown can be found in a variety of settings, including when used in RESTful APIs, which
is the basic architecture used for client server communication via the internet. As can be seen in
Table 4.1, each operation above maps directly to a type of HTTP request.

Operation HTTP Method

Create PUT
Read GET
Update PUT
Delete DELETE

Table 4.1: CRUD map to HTTP Requests

In this course we aren’t as interested in operations outside of SELECT. For most data analysts and data
scientists, 99.999% of the queries that they will write are retrieving data.

4 Creating Tables, Constraints and Deleting tables

• To create an empty table we use the CREATE TABLE command and specify the table name and the
columns therein.

• At the time that the table is created we specify the entire table schema and specifically the column
names and the data types of those columns.

• If we were create a table which contains the names of people and the balances of their bank accounts,
we would use the following command:

CREATE TABLE cls.balances (
aName varchar(30)
, aBal int

);

which would create a table with two columns, the first being called aName and the second aBal. The
first column is a varchar – or variable length character string and the second is an integer.

66

D
RA
FT

• This command also allows us to specify additional properties of the table and columns within the
table.

• There are a few classes of properties that we can specify:

1. Storage information: Specific configuration regarding how the data is stored at the physical
layer (beyond the scope of this course)

2. Constraints: Rules that the data within the table must abide by before the data is inserted
into the table. We will talk a bit about this below.

3. Index information: What indexing strategies should be used in the table (we’ll talk about
this later).

4. Triggers: A “trigger” is a piece of procedural (usually non-SQL code) that is run when a
particular SQL command is run. For example, you could create a trigger which would send an
email or raise an alert if a particular type of SQL command is run on the table. This is beyond
the scope of this course.

• Constraints and Triggers are powerful tools within a database because they allow us to verify data as
it is being loaded and execute additional commands upon the data being updated or changed. The
downside of both of these powerful tools is that they put additional strain at on the database and
therefore in certain situations they are avoided. For example, databases with very large write-loads
(e.g. they are writing a lot of data very quickly) will usually avoid adding constraints because the
cost of checking those constraints can bottleneck the system.

• The two most frequently used constraints are NOT NULL and UNIQUE which enforce the obvious on
a column (or set of columns). For example, we could write the following as our create table:

CREATE TABLE cls.balances2 (
aName varchar(30) UNIQUE NOT NULL
, aBal int NOT NULL

);

which would prevent the database from allowing any data to be inserted with either a Null abalance
or a Null or Non-unique aName.

• Uniqueness constraints can also be created at the table level on groups of columns. It is possible to
encounter a situation where we wanted a pair (or more) of columns to be unique together we could
also specify this.

• There are tons of other constraints, but they are not as common and their syntax is frequently SQL
variant specific. Here is a fun constraint on aName:

CREATE TABLE cls.balances3 (
aName varchar(30) UNIQUE NOT NULL CHECK (trim(aname) <> '' AND length(aname) > 5)
, aBal int NOT NULL

);

This would check to make sure that aName is (1) unique, (2) not null, (3) not equal to an empty
string and (4) length larger than 5.

• To delete a table from the database we use the command DROP. To drop the tables we have created
above you could use the following commands:

67

D
RA
FT

DROP TABLES cls.balances2;
DROP TABLES cls.balances3;

• A useful argument for these two commands specifies behavior in the case that the table already or
does not exists. The arguments IF NOT EXISTS and IF EXISTS which are used on CREATE and
DROP respectively and will only create if the table does not exist and drop if it does. These are useful
when loading and dropping data to avoid errors being returned. You can find examples of these
commands in the sql-data repository and specifically the functions contained in the load_data.py
file.

5 Altering Tables

• To change the structure of a table we use the command ALTER.

• The most common operations that we do with ALTER are adding, dropping and modifying columns.

• These operations should not be undertaken lightly as they can be incredibly expensive for the
database. Mentally, you should equate running one of these commands with reading and rewrit-
ing the entire table.

• Here are two examples:

ALTER TABLE cls.balances ADD COLUMN new_col_1 varchar(10);
ALTER TABLE cls.balances DROP COLUMN new_col_1;

6 Inserting, Copying, Updating and Deleting

• We use the INSERT command to put small amounts of data into a table. For larger amounts we use
the COPY command.

• While the INSERT command facilitates getting data into a table a few different ways, we’ll focus on
two: providing values directly and loading values generated from a query.

• Consider the following commands, which create a table and then insert values into it from the output
of another query.

create table cls.unique_county_names (
countyname varchar(20) NOT NULL UNIQUE
);

insert into cls.unique_county_names
(select distinct countyname from cls.cars);

• The other common way to use INSERT to put data into a table is by providing values, such as in the
example below:

68

D
RA
FT

CREATE TABLE cls.balances (
aName varchar(30)
, aBal int

);

INSERT INTO CLS.balances VALUES ('Nick', 1000), ('Jim', 300)
, ('Judy', 100), ('Jean', 1500);

• Each row is put in parenthesis in this method.

• Inserting data into a table is (unsurprisingly) costly and should not be undertaken lightly.

• If we wish to change data within a table, while maintaining the same data types we use the UPDATE
command, as in the following example:

CREATE TABLE cls.balances (
aName varchar(30)
, aBal int

);

INSERT INTO CLS.balances VALUES ('Nick', 1000), ('Jim', 300)
, ('Judy', 100), ('Jean', 1500);

UPDATE cls.balances set aName = 'Nicholas' where aName = 'Nick';
UPDATE cls.balances set aBal = 0;

• To remove data from a table we use DELETE:

DELETE FROM cls.balances where aName = 'Nicholas';

• If we want to drop all rows from a table we use TRUNCATE, which is a high performance delete when
removing all rows.

TRUNCATE TABLE cls.balances;

7 Transactions and ACID

• Consider the following table and queries:

69

D
RA
FT

CREATE TABLE cls.balances (
aName varchar(30)
, aBal int

);

INSERT INTO CLS.balances VALUES ('Nick', 1000), ('Jim', 300)
, ('Judy', 100), ('Jean', 1500);

--Assume that Nick makes a deposit of 100:
update cls.balances set aBal = aBal + 100 where aName = 'Nick';

--Assume that Jim withdraws 200:
update cls.balances set aBal = aBal - 200 where aName = 'Jim';

--Assume that Jean drops her account:
delete from cls.balances where aName = 'Jean';

--Assume that Julian creates an account with 250:
insert into cls.balances values ('Julian', 25);

The resulting table would have four rows:

select * from balances;

aname | abal
--------+------
Judy | 100
Nick | 1100
Jim | 100
Julian | 250
(4 rows)

• A transaction is a unit of work which is to be treated as a single entity within a database. A
transaction may consist of multiple queries.

• Transactions are important in a few specific instances: (1) If there are multiple users/sessions access-
ing and manipulating the database and (2) If queries are required be executed together.

• If nothing within the transaction is changing the state of the database (think the underlying data),
then transactions become much less important.

• If there is only a single user interacting with the database in a single session, then the implications
of transactions aren’t that important, but this is not usually the case.

• The lifecycle, or transaction process looks like the following:

1. Begin the transaction

2. Attempt all statements within the transactions:

3. If they are successful then commit the transaction.

4. Otherwise (at least one statement fails): then rollback the transaction.

70

D
RA
FT

5. End the transaction.

• The phrase commit is technical – it’s when whatever changes to the database are set so that other
users see them.

• If a commit fails, the database will rollback to its previous state.

• Consider the following example, based on the balances table from the previous section, where Nick
gives $100 to Jim.

BEGIN;

UPDATE CLS.BALANCES SET ABAL = ABAL + 100 where aname = 'Jim';

UPDATE CLS.BALANCES SET ABAL = ABAL - 100 where aname = 'Nick';

COMMIT;

• In this example the two commands regarding Nick and Jim are treated as a single command. We
want this to be the case – if something goes wrong, the state of the database returns to the state
that it was at the start of the transaction.

• Most SQL clients have an AUTOCOMMIT feature, which runs every query as its own transaction.
Some SQL clients will use the semi-colon as a transaction divider. For most of the SQL clients I’ve
seen and used these parameters are configurable.

BEGIN;

UPDATE CLS.BALANCES SET ABAL = ABAL + 100 where aname = 'Jim';

--Query below has an error and thus the database will be returned to the
--state before the BEGIN
UPdt CLS.BALANCES SET ABAL = ABAL - 100 where aname = 'Nick';

COMMIT;

• Consider the queries in Figure 4.1. Each column represents a connection to the database while time
increases downward. Any query not in a transaction block is its own transaction.

• Importantly, the database keeps the transaction behavior separate between the connections until
those transactions are committed.

• What makes a good transaction? Transactions in Relational Databases have the following properties,
generally referred to as ACID:

– Atomic: Transactions are treated as a single unit. If there are 9 queries within a transaction
and the 8th one fails, the seven queries that preceded it are not committed to the database.

– Consistent: A transaction is processed if and only if it does not violate any system rules. For
example, if you try to put a string in an integer field then the transaction will fail.

– Isolation: Transactions that are executed concurrently behave appropriately. More on this in
the next section.

– Durable: Once a transaction is committed, it is committed perpetually. If the system reboots
or restarts after a transaction is committed then you can expect that transaction to have gone

71

D
RA
FT

Figure 4.1: Transaction Demonstration

Connection #1

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = ABAL + 100
WHERE aname = 'Jim';

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

UPDATE CLS.BALANCES
SET ABAL = ABAL - 100
WHERE aname = 'Nick';

COMMIT;

Connection #2

SELECT * FROM CLS.BALANCES;
aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

200
(1 row)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

72

D
RA
FT

through. After a restart the system will not contain the previous state of the database.

8 Isolation Levels in Relational Databases

• The Isolation aspect of ACID is complex. Specifically, Isolation refers to how the database operates
in the case when multiple transactions conflict with each other. For example, if two transactions try
to update the same row of data within a table then isolation describes how this conflict gets resolved.

• When I think of Isolation I don’t think of it as a “single property” – like Atomicity or Durability, but
more as a spectrum of behaviors that a database can demonstrate in relation to specific conflicts.

• The ANSI SQL standard specifics four different levels of transaction isolation. These isolation levels
are defined by what phenomena they disallow, as can be seen in Table 4.2. Note that these Isolation
levels are listed from “weakest” to “strongest”. We will go over each below.2

Isolation Level Dirty Read Nonrepeatable Read Phantom Read Serialization Anomaly

Read uncommitted Allowed3 Possible Possible Possible
Read committed Not possible Possible Possible Possible
Repeatable read Not possible Not possible Allowed4 Possible
Serializable Not possible Not possible Not possible Not possible

Table 4.2: ANSI standard for Isolations

1. Dirty Read: A dirty read occurs when a user sees data that is not committed. Consider the
following example, once again starting from the transactions in 4.2 (which are similar to those
in Figure 4.1 above). A dirty read has occurred because, in connection #2 the balance shows
the uncommitted 300 which is a contamination between transactions.

We can’t give a proper demonstration of a dirty read in Postgres because, even at the lowest
Isolation Level (“Read Uncommitted”) Postgres’s Isolation system won’t allow it.

2. Nonrepeatable Read: A nonrepeatable read occurs when the state of database has changed
between two reads within a transaction. Specifically, nonrepeatable reads occur when the value
within a row has changed between two SELECT statements. Consider the set of transactions
in Figure 4.3 which demonstrate this occurring as the second connection returns two different
values for the same query within a transaction.

3. Phantom Read: A Phantom Read occurs when the state of database has changed between
two reads within a transaction and it effects which rows are returned. Consider the example
in Figure 4.4. In this example the rows that are being returned are incorrect, in that the
second transaction shouldn’t see the changes from the first transaction as they have not been
committed.

4. Serialization Anomaly: A serialization anomaly occurs when the result of concurrent trans-
actions is different depending on the order. For example, consider the transactions in Figure
4.5. In this case, the order of the transactions, which are concurrent, determines the final table
values.

2There are a number of people who have strong opinions about the effectiveness of these designations. A Critique of ANSI
SQL Isolation Levels published by Microsoft Research’s Advanced Technology division provides a good starting point for this
discussion.

73

D
RA
FT

Figure 4.2: Dirty Read Example

Connection #1

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = ABAL + 100
WHERE aname = 'Jim';

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

UPDATE CLS.BALANCES
SET ABAL = ABAL - 100
WHERE aname = 'Nick';

COMMIT;

Connection #2

SELECT * FROM CLS.BALANCES;
aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

74

D
RA
FT

Figure 4.3: Nonrepeatable Read Example

Connection #1

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = ABAL + 100
WHERE aname = 'Jim';

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

UPDATE CLS.BALANCES
SET ABAL = ABAL - 100
WHERE aname = 'Nick';

COMMIT;

Connection #2

BEGIN;

SELECT * FROM CLS.BALANCES;
aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

200
(1 row)

SELECT ABAL from CLS.BALANCES
WHERE aname = 'Jim';
abal

300
(1 row)

COMMIT;

75

D
RA
FT

Figure 4.4: Phantom Read Example

Connection #1

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = 50
WHERE aname = 'Jim';

COMMIT;

Connection #2

BEGIN;
SELECT * FROM CLS.BALANCES;
aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

SELECT ANAME from CLS.BALANCES
WHERE ABAL <= 100;
aname

Julian
Jim

(2 rows)

COMMIT;

76

D
RA
FT

Figure 4.5: Serialization Anomaly Example

Connection #1

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = 50
WHERE abal >= 100;

COMMIT;

Connection #2

SELECT * FROM CLS.BALANCES;

aname | abal
--------+------
Judy | 100
Julian | 25
Jim | 200
Nick | 1000
(4 rows)

BEGIN;

UPDATE CLS.BALANCES
SET ABAL = 25
WHERE abal >= 100;

COMMIT;

77

D
RA
FT

• Referring back to Table 4.2, there are multiple isolation levels defined which either allow or disallow
the above cases to occur. In Postgres, we can see the current isolation level as well as set the isolation
level within a transaction using the commands:

BEGIN;

sql_class=*# show transaction isolation level;
transaction_isolation

read committed
(1 row)

set transaction isolation level Serializable;
SET

show transaction isolation level;
transaction_isolation

serializable
(1 row)

COMMIT;

• By switching the isolation level associated with the transaction we can change the databases behavior
in these situations.

• What happens if we trigger this behavior? In PostgreSQL, the offending transaction will either
“lock” or “fail” due to an error. In the case that the isolation level is set to serializable and
two conflicting transactions occur, the database will return an error like:

ERROR: could not serialize access
due to read/write dependencies
among transactions

DETAIL: Cancelled on identification
as a pivot, during commit attempt.

HINT: The transaction might succeed if retried.

• A “lock” on the other hand occurs when the database realizes that two processes are vying for a
single resource and chooses to “block” one of those processes until something gets resolved. In the
case of a lock occurring user intervention maybe required if certain time out thresholds aren’t met.

• Why does this matter?

9 Why do we care (NoSQL)?

• THIS IS STILL UNDER CONSTRUCTION.

• Why is ACID important to think about? It seems that these properties seem “obvious”, in the sense
that they are things that we want in a database. While that maybe true, making sure that a database
is ACID compliant is costly in a few ways.

• While there is no “official” definition of NoSQL, one way that other database systems distinguish

78

D
RA
FT

themselves is by not being fully ACID compliant. Amazon’s Cloud Service FAQ notes:5

NoSQL databases often trade some ACID properties of traditional relational database man-
agement systems (RDBMS) for a more flexible data model that scales horizontally. These
characteristics make NoSQL databases an excellent choice in situations where traditional
RDBMS encounter architectural challenges to overcome some combination of performance
bottlenecks, scalability, operational complexity, and increasing administration and support
costs.

• Is this the only thing that distinguishes NoSQL databases from traditional RDMS systems? Abso-
lutely not.

• There are tons of very reasonable ways that a database can relax the rules around an RDMS and be
called a NoSQL database – relaxing the transaction assumptions is just one of the ways that it can
be done.

• Another common distinction between RDMS and NoSQL databases is how information within the
database is stored and it’s ability (or inability) to be used internally to the database, such as in joins.

• MongoDB (“Mongo”) presents an interesting case study in what it means to be a NoSQL database.
When Mongo was originally released, the first versions had known limitations around their durability.
A (relatively) at the time, database meme was that MongoDB was “marketing pretending to be a
database” or that it was the SnapChat of databases (see the image in 4.6 for something that was
passed around in the early 2010’s).

Figure 4.6: Something to keep in mind! Source unknown.

5https://aws.amazon.com/nosql/?nc1=f_cc

79

https://aws.amazon.com/nosql/?nc1=f_cc

D
RA
FT

The original versions of MongoDB were well known to not be durable

MongoDB, for example, is not as atomic as other databases. In Mongo for example, a WHERE
clause may not return a matching row if the row is in the middle of an update, even if both pre- and
post-update that row would match the WHERE clause. Amazon’s Redshift system also relaxes some
consistency measures to make sure that data can load quickly.

10 NoSQL

Types of databases and NoSQL.

Generally NoSQL relaxes some of the constraints that can be found in relational databases.

• Key-Value Stores: Key-value stores are databases that are organized around two columns, a key
and a value. Values in this case generally have set, fixed schemas. Examples of this type of database
include HBase, Amazon’s Dynamo DB and Cassandra. The common use case of this data is severing
user-specific data, such as saved game files or account information. In most of these cases there
is enough structure on the data in the value the database itself can use that information to it’s
advantage.

• Document Stores: This type of database structure is similar to the Key-Value store, expect that
instead of the record being a value, the record is a document, which is different from a value in that
it has a less fixed size schema. The reason that this is called a document store, as opposed to a key
value store is to make it clear that the database isn’t going to try to use information regarding the
values in optimizing its data structure. Examples of this include MongoDB and common use cases
include storing network information.

• Relational databases: Relational databases are the most common type of database. The key
feature of these databases is that the information within the database is expected to be stored in
multiple tables that join together. In terms of performance, the database engines expect to use joins
and provide structure on optimizing tables along different dimensions to facilitate multiple joins.
There are two major classes of these databases and the properties of each are sufficiently different
that we cover them separately.

– Row-based databases: A Row-based database, such as PostgresSQL and Postgres store data
in rows on the hard drive. In other words, if you were looking at a row-column entry on the
hard drive and then read the next big of data, it would contain the next column in the database,
alone that same row. This means that loading whole rows, once a row has been identified, is
performant. If you were working at a bank-terminal and were looking up customer information,
this would make sense, since once the customer’s location has been identified on the hard drive,
all the ancillary information about that customer is right there. The first two databases that we
are going to talk about in this class, PostgresSQL and Postgres are both row-based relational
databases.

– Columnar databases: Column-based (“Columnar”) databases, store information in columns
on the hard drive. This type of database technology is relatively recent, examples include
Vertica, SAS HANA and Amazon’s redshift. These databases exist to assist data analysts, as
the most common operations that data analysts do are not row, but column based. For example,
in a row-based database, finding the average of a column is difficult because the information will
be scattered over the entire data partition. Columnar databases are optimized for this type of
operation by placing the data in column order. The final database that we are going to consider
in this class, Amazon Redshift, is a columnar database.

80

D
RA
FT

11 Transaction Implementations [TBD]

81

D
RA
FT

82

D
RA
FT

Chapter 5

Aggregations

83

D
RA
FT

Contents

1 Introduction to MTA data set . 85

2 GROUP BY clause . 86

3 Column numbering syntax . 91

4 Aggregates and CASE Statements . 93

5 Named Subqueries . 95

84

D
RA
FT

1 Introduction to MTA data set

• In this section we are going to introduce another data set, the NY MTA dataset, which contains
information on the number of cars that pass certain plazas between January 1st, 2010 and January
7th, 2017, about 7 years of data.

• Looking at the dataset, we see that it is a long (or tall) dataset, with 6 columns. The data represents
the number of cars that go through different toll plazas in the city by hour. The data is divided
between cars which paid via EZ-pass and cash and split between those drivers heading away from
the city (“O” direction) and those heading into the city (“I”).

select * from cls.mta limit 10;

plaza mtadt hr direction vehiclesez vehiclescash
------- ---------- ---- ----------- ------------ --------------

2 2013-10-14 16 I 2469 336
2 2013-10-14 16 O 2393 473
2 2013-10-14 17 I 2853 425
2 2013-10-14 17 O 2116 417
2 2013-10-14 18 I 2575 394

[...]

• For example, if we want to see the number of cards which are heading outbound between 2 and 3 am
on the 15th of June, 2015 over the Robert F. Kennedy Bridge Manhattan Plaza (Triborough bridge
into Manhattan, which is Plaza #2), can be found by writing the following query:

select

*
from

cls.mta
where

plaza = 2
and direction = 'I'
and hr = 2
and mtadt = '2015-06-15';

plaza mtadt hr direction vehiclesez vehiclescash
------- ---------- ---- ----------- ------------ --------------

2 2015-06-15 2 I 173 58

• A unique row in this dataset is denoted by the items in the WHERE clause – plaza, mtadt, hr and
direction.

• If we wanted look at the total number of cars, for each hour, that go through Plaza #2 we could do
the following:

85

D
RA
FT

select
plaza, mtadt, hr
, vehiclesez + vehiclescash as totalCars

from
cls.mta

where
plaza = 2
and direction = 'I'

order by mtadt, hr;

plaza mtadt hr totalcars
------- ---------- ---- -----------

2 2010-01-01 0 747
2 2010-01-01 1 903
2 2010-01-01 2 742
2 2010-01-01 3 501
2 2010-01-01 4 456

[...]

2 GROUP BY clause

• Up until this point we have been slicing data, removing rows and columns. The next syntax we will
study aggregates, or collapses, data into a smaller number of rows. In other words, this operation
now looks between rows in order to undertake its calculation. Importantly, this operation defines
subsegments of the table that are treated as a single group.

• Consider the following query:

select
MAX(vehiclescash) as maxcash
, plaza

from
cls.mta

group by plaza;

maxcash plaza
--------- -------

1352 1
1040 2
1594 3
1368 4
674 5

[...]

GROUP BY to combines similar values. This query combines data by plaza and returns the maximum
number of cars that pay cash in any hour through that plaza.

• This query will return 10 rows, one for each plaza. The query calculates the the maximum value of

86

D
RA
FT

vehiclescash for by plaza.

• The GROUP BY clause is applied and written after the WHERE clause. If a WHERE clause removes
a row then that row will not be aggregated via the function.

select
MAX(vehiclescash) as maxcash
, plaza

from
cls.mta

where
plaza = 2

group by plaza;

maxcash plaza
--------- -------

1040 2

• GROUP BY requires every column within the SELECT clause to be either inside a function or part
of the GROUP BY. The following query yields an error:

select
MAX(vehiclescash) as maxcash
, hr
, plaza

from
cls.mta

group by plaza;

ERROR: column "cls.hr" must appear in the GROUP BY
clause or be used in an aggregate function

• Other aggregate functions include average (“AVG”), minimum (“MIN”), count (“COUNT”) and sum
(“SUM”):

87

D
RA
FT

select
plaza
, min(vehiclescash) as minveh
, count(vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh

from
cls.mta

group by plaza
order by avg(vehiclescash) desc;

plaza minveh ctveh sumveh avgveh
------- -------- ------- -------- --------

11 0 61488 38181458 620.958
3 0 122976 67000523 544.826
1 0 122976 54359482 442.033
9 0 122976 53530379 435.291
2 0 122976 38009405 309.08

[...]

• Implicit GROUP BY: If every column within a select statement is an aggregate function then the
query will still run, even if it does not have GROUP BY put down explicitly:

select
sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh

from
cls.mta;

sumveh avgveh
--------- --------
330901032 283.858

In this case, the entire table is treated as a single group within the GROUP BY.

• There is also a special aggregation: COUNT(DISTINCT XXX), which returns the number of unique
values within a given group:

select
count(distinct plaza) as plazact

from
cls.mta;

plazact

10

Note that COUNT DISTINCT counts the number of unique non-null entries.

88

D
RA
FT

• We can include multiple columns within the GROUP BY and it will calculate the functions among
unique combinations of the columns selected. For example:

select
plaza
, mtadt
, sum(vehiclescash + vehiclesez) as totalcars

from
cls.mta

group by plaza, mtadt
order by plaza, mtadt;

plaza mtadt totalcars
------- ---------- -----------

1 2010-01-01 57606
1 2010-01-02 63405
1 2010-01-03 59496
1 2010-01-04 72610
1 2010-01-05 72880

[...]

• What if I forget to include an AS?

select
count(vehiclesez)
, max(vehiclesez)
, max(vehiclescash)

from
cls.mta;

count max max
------- ----- -----
1165728 8345 2116

Without the AS, the database returns the column with the name of the aggregate function.

• Before continuing, lets answer some simple questions about the table. What percentage of cars which
pass through a toll plaza during this time period use an EZ-pass?

select
sum(vehiclesez)::float / (sum(vehiclesez) + sum(vehiclescash)) as pct_EZ

from
cls.mta;

pct_ez

0.817743

We can see that it is around 80%.

89

D
RA
FT

• COUNT AND SUM can be used to return the number of rows within the table. Looking at the
queries in Table 5.1 you can see that placing a number within a count returns the number of rows.
Note that the second query will return the number of rows because it counts the number of ‘1’s that
appear. It is not counting the number of rows in the first column – it is counting the number of rows
that would appear if every value within that column was equal to 1. Consider the following variants
on this in the following table:

Syntax What is returned

select count(*) Number of rows
select count(1) Number of rows
select 2*count(*) Twice the number of rows
select 2*count(2) Twice the number of rows
select 2*count(-1) Twice the number of rows
select 2*count(Null) Zero
select 2*sum(1) Twice the number of rows
select 2*sum(2) Four times the number of rows

Table 5.1: Examples of special syntax for counting rows

• GROUP BY treats NULL as a special, unique value. If there are NULL values in the column being
grouped, they will be treated as a single group.

• Null values within aggregate functions are not straightforward. Consider the following table (“null test”)
which has a two columns (“val” and “cond”), as can be seen below:

select * from cls.null_test;

val cond
----- ------

1 A
2 A
3 A

B

• SUM, MAX, MIN, COUNT and AVG all ignore Null values:

90

D
RA
FT

select
sum(val) as st
, max(val) as mt
, min(val) as mnt
, avg(val) as at
, count(val) as ct
, count(distinct val) as cd

from
cls.null_test;

st mt mnt at ct cd
---- ---- ----- ---- ---- ----

6 3 1 2 3 3

Note that this is different then when using ORDER BY, which treats Null values as larger than any
other value. Note that AVG(X) is equivalent to SUM(X) / COUNT(X). With COUNT(val), the Null
is ignored. However with count(*) the Null is not ignored!

select count(*) as ct, count(val) as ct2 from cls.null_test;

ct ct2
---- -----

4 3

• If the entire column is Null within a group, then each of AVG, MAX, MIN, SUM will return Null
and COUNT will return zero:

select
cond
, sum(val) as st
, max(val) as mt
, min(val) as mnt
, avg(val) as at
, count(val) as ct
, count(distinct val) as cd

from
cls.null_test

group by cond;

cond st mt mnt at ct cd
------ ---- ---- ----- ---- ---- ----
A 6 3 1 2 3 3
B 0 0

3 Column numbering syntax

• As with ORDER BY we can use column numbering syntax:

91

D
RA
FT

select
plaza
, min(vehiclescash) as minveh
, count(vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh

from
cls.mta

group by 1;

plaza minveh ctveh sumveh avgveh
------- -------- ------- -------- --------

1 0 122976 54359482 442.033
2 0 122976 38009405 309.08
3 0 122976 67000523 544.826
4 0 120624 21397862 177.393
5 0 122976 7798630 63.4159

[...]

In the query above the number 1 in the GROUP BY clause denotes the first column in the select
statement. In this case, that is “plaza”

• We can add multiple columns when using column numbering syntax. For example:

select
plaza
, mtadt
, min(vehiclescash) as minveh
, count(vehiclescash) as ctveh
, sum(vehiclescash) as sumveh
, avg(vehiclescash) as avgveh

from
cls.mta

group by 1,2;

plaza mtadt minveh ctveh sumveh avgveh
------- ---------- -------- ------- -------- --------

1 2010-01-01 249 48 28166 586.792
1 2010-01-02 186 48 28583 595.479
1 2010-01-03 261 48 27272 568.167
1 2010-01-04 143 48 26210 546.042
1 2010-01-05 103 48 25218 525.375

[...]

In this query, the data is grouped by two columns: plaza and mtadt. The grouping columns are
specified as “1,2”.

92

D
RA
FT

4 Aggregates and CASE Statements

• Aggregates and CASE statements can be combined in powerful ways. Let’s first count the number
of rows in the database where the hour is 2 and the number of vehicles paying cash is greater than
400. As demonstrated by the query below we can use a WHERE clause to only include the rows in
the table which fulfill this criteria.

select
sum(1) as ct

from
cls.mta

where
hr = 2
and vehiclescash > 400;

ct

256

• Let’s say that we also wish to get the number of rows in the database where the the number of
vehicles paying cash is less than or equal to 5 and the hour is 2. Because we are cutting up the
data into two mutually exclusive ways we need to do something other than a WHERE clause. If we
remove the rows to satisfy the first condition then we remove rows that would need to be counted in
the second condition.

We can implement both criteria using a CASE statement inside an aggregate function:

select
sum(case

when hr = 2 and vehiclescash > 400 then 1
else 0 end) as ct1

, sum(case
when hr = 2 and vehiclescash < 5 then 1
else 0 end) as ct2

from
cls.mta;

ct1 ct2
----- -----

256 1465

• We could also use the COUNT notation, rather than a SUM, by switching the zeros to Null:

93

D
RA
FT

select
count(case

when hr = 2 and vehiclescash > 400 then 1
else Null end) as ct1

, count(case
when hr = 2 and vehiclescash < 5 then 1
else Null end) as ct2

from
cls.mta;

ct1 ct2
----- -----

256 1465

• We can group by any column expression, including a CASE statement. In the following example we
use a CASE statement to categorize different rows and then use a GROUP BY statement in order
count how many of each occurs.

SELECT
CASE

WHEN vehiclescash > 400 then 'More than 400'
WHEN vehiclescash >= 5 then 'Between 5 and 400'
ELSE 'Less than 5'

END as breakdown_flag
, count(1)
, avg(vehiclescash) as avgCash

FROM
cls.mta

group by 1;

breakdown_flag count avgcash
----------------- ------- ---------
Between 5 and 400 824717 153.548
Less than 5 10778 1.22323
More than 400 330233 618.516

This creates categories of data, based on vehiclescash and then returns how many rows are in each
category.

• We can define a column by almost anything and then group by it. In the following example, we look
at the difference between the vehicles which pay cash and which pay by EZ pass. If the difference is
sufficiently large we categorize it one way and if not, another, but we remove zero’s first!

94

D
RA
FT

select
case

when vehiclescash = 0 then 'Zero Cash'
when abs(vehiclescash - vehiclesez)::float

/ vehiclescash < .05 then 'less than'
else 'more'

end
, count(1) as ct

from
cls.mta

group by 1;

case ct
--------- -------
Zero Cash 6512
less than 2765
more 1156451

In the case above this returns 3 rows and 3 columns since we are aggregating on a column which can
take one of three values. Aggregating on case statements is an incredibly powerful way to calculate
statistics on

5 Named Subqueries

• Let’s calculate the number of cars that go through each plaza each day in the Inbound direction
using cash:

select
sum(vehiclescash) as totalcash
, mtadt
, plaza

from
cls.mta

where
direction = 'I'

group by mtadt, plaza;

totalcash mtadt plaza
----------- ---------- -------

14783 2010-01-01 1
8965 2010-01-01 2
17309 2010-01-01 3
3840 2010-01-01 4
1454 2010-01-01 5

[...]

• Now, let’s try to calculate how many cars go through the average plaza on the average day in the
inbound direction using cash. In other words, we want to take the average of the above. In this case

95

D
RA
FT

we can try to do the following:

select
avg(sum(vehiclescash))

from
cls.mta

where
direction = 'I';

ERROR: aggregate function calls cannot be nested
LINE 2: avg(sum(vehiclescash))

Unfortunately we can’t nest aggregation functions. To answer the question above we need to use a
subquery since we need to do an aggregation on another aggregation.

select
avg(sumcash) as avgcars

from
(select

sum(vehiclescash) as sumcash
, mtadt
, plaza

from
cls.mta

where direction = 'I'
group by mtadt, plaza
) as innerQ;

avgcars

7394.15

To understand this query, lets start by breaking it apart and focusing on the inner query first:

96

D
RA
FT

select
sum(vehiclescash) as sumcash
, mtadt
, plaza

from
cls.mta

where direction = 'I'
group by mtadt, plaza;

sumcash mtadt plaza
--------- ---------- -------

14783 2010-01-01 1
8965 2010-01-01 2
17309 2010-01-01 3
3840 2010-01-01 4
1454 2010-01-01 5

[...]

The result of this inner query is a table itself wth three columns and a row for each mtadt-plaza
combination. The column sumcash represents the number of cars, in total, which went through that
plaza-mtadt combination using cash – which is the just the number that we want to average!

Using this table we can then take an average on it, which we do in an outer query. Importantly, when
we nest queries in this fashion we have to give then a name, which we do in this case with the AS
clause. As a note, just like when naming a column the AS itself is optional, though recommended.

• Lets look at another example: What percentage of the day-plaza combinations in our dataset have an
inbound-to-outbound ratio of less than 90% for cash transactions? In other words, what percentage
of plazas, on a given day, have more outbound traffic than inbound traffic by 10%?

Just as before we will need to compute multiple levels of aggregation. Lets work from the inside out
– first computing the number of inbound and outbound cars for each plaza-mtadt combination.

97

D
RA
FT

select
sum(case when direction = 'I'

then vehiclescash else 0 end) as InboundCash
, sum(case when direction = 'O'

then vehiclescash else 0 end) as OutboundCash
from

cls.mta
group by

plaza, mtadt

inboundcash outboundcash
------------- --------------

14783 13383
14680 13903
14049 13223
13202 13008
12688 12530

[...]

Note that we are grouping by columns which we are not selecting – which is allowable under most
SQL variants. Since we don’t need to know which row is associated with each plaza or mtadt, only
the totals, we will not select it. Once we have this data we can then do the aggregation that we are
interested in:

select
sum(case when InboundCash <= .90 * OutboundCash

then 1 else 0 end)::float
/ count(1) as pct

from
(select

sum(case when direction = 'I'
then vehiclescash else 0 end) as InboundCash

, sum(case when direction = 'O'
then vehiclescash else 0 end) as OutboundCash

from
cls.mta

group by
plaza, mtadt) as innerQ;

pct

0.0303516

• In the cases above we were required to use a subquery because we wanted to do two levels of
aggregation, which is a common problem. For example, let’s say that we wanted to find the average
number of rows per plaza, for rows which have more than 700 EZ pass cars. In this case we first
need to do two levels of aggregation – first calculating the number of rows, per plaza, which fulfill
the criteria and then averaging over the plaza – as can be seen below:

98

D
RA
FT

select
avg(numrows) as avgrows

from
(select

count(1) as numrows
, plaza

from
cls.mta

where
vehiclesEZ >= 700

group by 2) as innerQ;

avgrows

69457

In the case above the inner query only has 10 rows, one for each plaza while the outer query only
returns the average.

99

D
RA
FT

100

D
RA
FT

Chapter 6

Dates and Types

101

D
RA
FT

Contents

1 Date Types . 103

2 Date Functions . 104

3 Hard GROUP BY problems . 110

102

D
RA
FT

1 Date Types

• In this section we’ll be consider how Dates are dealt with in SQL. As a reminder, Figure 6.1 has the
different types that most SQL standards subscribe too.

Common Data Types

Dates and Times

Interval

TimeStamp

Time

Date

Strings

Arbitrary length “text”

Fixed length “char”

Variable length “varchar”

Numbers

Fixed precision “Numeric’

Floating precision “Float”

Integer “Int”

Figure 6.1: Common relational database data types

Dates

• Date and time functions are the least standardized portion of the SQL language. Different variants
use different functions and conventions when in this area.

• Dates and times are complicated. Timezones, server and client location and configuration all yield
small changes in how the database operates and what is returned in different operations.

• Date and times should not be considered “standard” between SQL variants. Different servers use
different functions, types and standards. Whenever working with a variant of SQL you are unfamiliar
with make sure to verify that it is doing what you expect.

• There are four standard data types in Postgres:

1. Dates: Stores a date, ranging from 4713 BC to 5874897 AD.

2. Time: Stores only a time with a resolution of 1 microsecond.

3. Timestamp: Sometimes referred to as a “datetime.” Contains both a date and a time and
ranges from 4713 BC to 294276 AD.

4. Interval: Time interval (such as “1 Year” or “2 hours”). These do not have a start or end and
only represent a length of time.

• Timezones are problematic: Dates do not contain a timezone, but time and timestamp may have
them. Depending on how the server and client are set-up, timezones may also prove otherwise
problematic. Often it feels like timezones are applied in a haphazard way, so be careful!

103

D
RA
FT

• Daylight savings times, for example, starts and ends on different dates in Europe then in the United
States.

• Because of all these issues, many database administrators (including myself) recommend storing
times using Unix or epoch time, which is the number of seconds since 1/1/1970 in UTC. Since this
is a specific point in time, there is no timezone confusion.

2 Date Functions

• There are four classes of operations we want to do with date objects:

1. Convert a string to date: We can do this a few different ways, but these are types of cast
operators. We won’t get into this too much. In simple cases we can do the “obvious” and it
works.

select '2012/03/12'::date as dt

dt

2012-03-12

select '2012/03/01 11:35:00'::timestamp as ts

ts

2012-03-01 11:35:00

select '1 month'::interval, '2 hours'::interval as dt

interval dt
---------------- -------
30 days, 0:00:00 2:00:00

A reminder that the double colon notation is specific to Postgres. There are alternative functions,
such as to_timestamp and to_date which exist in other variants which do similar things.

2. Convert a date to a string: This isn’t something that we do that much in SQL, but if
required we use the to_char function.

3. Extract part of a date: There are two functions which do this, date_part or extract.
These functions extract a specific value from a date or timestamp and return it as a different
type (frequently an integer). A few examples below:

104

D
RA
FT

select date_part('month', '2012/03/12'::date) as mnth;

mnth

3

select date_part('hour', '2012/03/01 11:35:00'::timestamp) as hr;

hr

11

select extract('dow' from '2012/03/01 11:35:00'::timestamp) as day_of_week;

day_of_week

4

Note that dow starts with Sunday (at zero) and goes to Saturday (6)

4. Basic date math and comparisons: To do basic date math, such as adding a 3 days or
subtracting an hour, we use the addition and subtraction operators with intervals:

select '2001-01-01 01:00:00'::timestamp + '21 hours'::interval as TS;

ts

2001-01-01 22:00:00

Comparison operators (<,>,=) behave as expected. One caveat is that when you compare a
timestamp with a date, the date is converted to a timestamp for midnight of that day:

select now() < current_date as c1, now() > current_date as c2;

c1 c2
----- ----
False True

• While the above are the four most common operations you want to do, there are some additional
functions which are nice to know about:

– current_date and current_time / now() return the full timestamp, the current date and
the current time.

105

D
RA
FT

select now(), current_date, current_time

now current_date current_time
-------------------------------- -------------- ---------------------
2023-08-14 20:50:04.440825+00:00 2023-08-14 20:50:04.440825+00:00

– date_trunc: This function truncates a date or timestamp down to a certain precision. Note
that this will return a timestamp with the values beyond the specified precision set to their
lowest possible value. For example:

select date_trunc('month', '2012/03/12'::date) as mnth;

mnth

2012-03-01 00:00:00+00:00

select date_trunc('hour', '2012/03/01 11:35:00'::timestamp) as hr;

hr

2012-03-01 11:00:00

In both of these examples the value being acted on loses its precision. The object returned is a
timestamp with all precision below a certain threshold set to the smallest possible value.

– date(): Returns the date of a given timestamp in date format. This does a type conversion,
which is more than simply truncating the timestamp.

select date('2012/03/01 11:35:00'::timestamp) as dt;

dt

2012-03-01

Unfortunately, dates can be difficult to work with, as the following examples demonstrate:

• Seemingly arbitrary math. You can add integers to dates, but not to timestamps

select now() + 1 as dt;
ERROR: operator does not exist: timestamp with time zone + integer

106

D
RA
FT

select date(now()) + 1 as dt;

dt

2023-08-15

• BETWEEN may not work as expected. For example:

select now() between date(now()) -1 and now() as TF;

tf

True

Now is between yesterday and now

select now() between date(now()) -1 and date(now()) as TF;

tf

False

but now is not between yesterday and today.

select date(now()) between now() and date(now()) + 1 as TF;

tf

False

but today is between now and tomorrow.

• Most annoying of all? Every variant of SQL is slightly different.

• Epoch time is pretty great at solving some of these problems, but at the cost of interpretation:

– Math works as expected.

– BETWEEN works as expected.

– No time zone ambiguity.

• For the rest of this section we’ll do a few time related problems using the NYC MTA data.

• Let’s return the average cash volume of cars by day of the week, inbound traffic only:

107

D
RA
FT

select
date_part('dow', mtadt) as dow
, avg(tvol) as avgvol

from
(select

sum(vehiclescash) as tvol
, mtadt

from
cls.mta

where
direction = 'I'

group by 2) as innerQ
group by 1
order by 2 desc;

dow avgvol
----- --------

6 87392.9
0 82829.7
5 78129.6
4 69274.6
1 67410.7

[...]

• By year, what percentage of cars which pass through a toll plaza use an EZ-pass?

select
date_part('year', mtadt) as yr
, sum(vehiclesez)::float / (sum(vehiclesez) + sum(vehiclescash)) as pct_EZ

from
cls.mta

group by 1
order by 1;

yr pct_ez
---- --------
2010 0.75715
2011 0.792285
2012 0.808791
2013 0.828819
2014 0.836587
[...]

• We can also create a time series of the number of inbound cars, by year and month, for Plaza #1
and #2:

108

D
RA
FT

select
date_trunc('month', mtadt)
, sum(case when plaza = 1

then vehiclescash else 0 end) as Plaza1Cars
, sum(case when plaza = 2

then vehiclescash else 0 end) as Plaza2Cars
from

cls.mta
where

direction = 'I'
group by 1;

date_trunc plaza1cars plaza2cars
------------------------- ------------ ------------
2010-01-01 00:00:00+00:00 427660 313278
2010-02-01 00:00:00+00:00 375918 274724
2010-03-01 00:00:00+00:00 462078 354619
2010-04-01 00:00:00+00:00 455395 353378
2010-05-01 00:00:00+00:00 487051 378600
[...]

• When moving in and out of date formats, you may have to rely on using special functions. Part of
the reason for this is because date and times require the user to specify the format. Consider the
following query:

select
mtadt
, hr
, to_timestamp(mtadt::varchar || ' ' || hr, 'YYYY-MM-DD HH24') as mta_ts

from cls.mta;

mtadt hr mta_ts
---------- ---- -------------------------
2013-10-14 16 2013-10-14 16:00:00+00:00
2013-10-14 16 2013-10-14 16:00:00+00:00
2013-10-14 17 2013-10-14 17:00:00+00:00
2013-10-14 17 2013-10-14 17:00:00+00:00
2013-10-14 18 2013-10-14 18:00:00+00:00
[...]

This query returns three columns: the date, hour and then it creates a timestamp object using the
command to_timestamp. This command takes in two strings. The first is a value to be converted
and the second is the format of that conversion. In this example we create a synthetic string made up
of the values of mtadt concatenated with a space and then the hour. This is passed to the command
and is then converted to a timestamp.

109

D
RA
FT

3 Hard GROUP BY problems

In this section we will look at some difficult GROUP BY problems using the MTA data as well as the
stocks data sets.

1. How many stocks (symbols) have 19 or more trading days for every month in 2010?

select
count(1) as ct

from
(select

symb
, count(1) as ct2

from
(select

symb
, date_part('month', retdate) as mn
, count(1) as ct

from
stocks.s2010

group by
1,2) as innerQ

where
ct >= 19

group by 1) as outerQ
where ct2 = 12;

ct

3106

2. Write a query which returns 12 rows and two columns. The first column should be month as an
integer and the second should be the number of trading days in that month. Do this for 2010 and
remember that dates only appear in the stocks table if they are trading days.

110

D
RA
FT

select
date_part('month', retdate) as mn
, count(distinct retdate) as trading_days

from
stocks.s2010

group by 1;

mn trading_days
---- --------------

1 19
2 19
3 23
4 21
5 20

[...]

3. Create a table with the information above, this time in a wide format: one column per month with
a single row.

select
count(distinct case when date_part('month', retdate) = 1

then retdate else null end) as Jan
, count(distinct case when date_part('month', retdate) = 2

then retdate else null end) as Feb
...[OTHER MONTHS OMITTED]

, count(distinct case when date_part('month', retdate) = 12
then retdate else null end) as Dec

from
stocks.s2010;

4. Write a query which returns 12 rows and 3 columns from the 2010 data. The first column should
be month as an integer, the second should be the number of unique stocks which had an open over
$100 that month and the third should be the number of unique stocks with an open less than $50
that month.

111

D
RA
FT

select
date_part('month', retdate) as mn
, count(distinct case when opn > 100

then symb else null end) as over100
, count(distinct case when opn < 50

then symb else null end) as less50
from

stocks.s2010
group by 1;

mn over100 less50
---- --------- --------

1 68 2929
2 58 2947
3 65 2924
4 71 2925
5 68 2989

[...]

5. Repeat the above, but this time only include those stocks which are also in 2011.

select
date_part('month', retdate) as mn
, count(distinct case when opn > 100

then symb else null end) as over100
, count(distinct case when opn < 50

then symb else null end) as less50
from

stocks.s2010
where

symb in (select distinct symb from stocks.s2011)
group by 1;

mn over100 less50
---- --------- --------

1 68 2904
2 58 2924
3 65 2901
4 71 2903
5 68 2969

[...]

6. We define the yearly spread as the difference between the maximum closing price for a stock and the
minimum closing price for a stock over the year. Write a query which returns all stocks whose yearly
spread in 2010 is less than 1

2 the largest yearly spread (from all stocks) in 2011.

112

D
RA
FT

select
symb

from
(select max(cls) - min(cls) as ys2010

, symb from stocks.s2010 group by 2) as IQ
where

ys2010 < .5 * (select max(ys2011) as max_ys2011 from
(select max(cls) - min(cls) as ys2011

, symb from stocks.s2011 group by 2) as IQ2);

symb

A
AA
AAME
AAN
AAON
[...]

7. For stocks in 2010 return the following: (1) symbol, (2) month and (3) the difference between the
maximum closing price and minimum closing price for each month. Only include those stocks which
were traded more than 10 days that month.

select
symb, mn, diff

from
(select

symb
, date_part('month', retdate) as mn
, max(cls) - min(cls) as diff
, count(1) as ct

from
stocks.s2010

group by 1,2) as innerQ
where

ct > 10;

symb mn diff
------ ---- ------
A 1 2.339
A 2 1.7096
A 3 1.8097
A 4 2.382
A 5 4.0988
[...]

8. Return the data in the previous problem in a wide format – one column per month and one row per
symbol.

113

D
RA
FT

select
symb
, sum(case when mn = 1 then diff else null end) as Jan
, sum(case when mn = 2 then diff else null end) as Feb

[OTHER MONTHS OMITTED]
, sum(case when mn = 12 then diff else null end) as Dec

from
(select

symb
, date_part('month', retdate) as mn
, max(cls) - min(cls) as diff
, count(1) as ct

from
stocks.2010

group by 1,2) as innerQ
WHERE ct > 10
GROUP BY 1;

114

D
RA
FT

Chapter 7

Averages

115

D
RA
FT

Contents

1 The Trouble with Averages . 117

2 HAVING . 119

3 COALESCE and NVL . 120

116

D
RA
FT

1 The Trouble with Averages

• A common difficulty of working with data is being precise when asking a question. For example,
consider that you have a table which contains information from a bank. Each row contains monthly
information about a bank customer, including their balance, if they own a home and some other
demographic information. We could, seemingly, answer the following questions:

– What is the average bank account size for people with more than $2,500 in their account?

– What is the average bank account size for people who own their own home?

However, these questions aren’t that well-defined since bank customers move through time and their
characteristics change. What happens to a customer who sells their home in the middle of the year
– Do you include them in the second question above? What if a person’s bank balance changes over
time – do you include them in the first question?

• Let’s consider a specific example:

“What is the average number of rows per plaza with a vehicles cash per hour greater than 500?”

In this case, there are a number of different ways that we can answer the question:

1. Any Row: We only include those rows which have a vehicles cash per hour greater than 1,000:

select avg(ct) as avgct
from

(select
count(1) as ct

from
cls.mta

where vehiclescash > 500
group by plaza) as innerQ;

avgct

22432

2. One Time: We include all information from a plaza if it ever crosses the boundary:

117

D
RA
FT

select avg(ct) as avgct
from

(select
max(vehiclescash) as maxcash
, count(1) as ct
, plaza

from
cls.mta

group by plaza) as innerQ
where maxcash > 500;

avgct

116573

3. Always: We include all counties which always have a vehiclescash greater than 500:

select avg(ct) as avgct
from

(select
min(vehiclescash) as mincash
, count(1) as ct
, plaza

from
cls.mta

group by plaza) as innerQ
where mincash > 500;

avgct

Note that this does not return anything since no plaza fulfills this critera

4. On Average: We can include all counties which have, on average, vehicles cash greater than
1,000:

118

D
RA
FT

select avg(ct) as avgct
from

(select
avg(vehiclescash) as avgcash
, count(1) as ct
, plaza

from
cls.mta

group by plaza) as innerQ
where avgcash > 500;

avgct

92232

The three previous queries are all equally correct interpretations of the question above. Since
the question did not adequately define the terms used reasonable people can come to different
answers. The moral of the story is that SQL requires a level of precision not generally found
when discussing data. Be careful!

2 HAVING

• If we just want to return the total number of rows for each county that fulfills the previous three
conditions? To do this we can use the HAVING clause, which works like a WHERE clause, but is
evaluated after the GROUP BY. It uses the same column groupings as the GROUP BY clause.

The HAVING clause is written after the GROUP BY, but before LIMIT, if there is a LIMIT.

Let’s return the raw data from some of the examples above:

1. One Time: We include all information from a plaza if it ever crosses the boundary:

select
max(vehiclescash) as maxcash
, count(1) as ct
, plaza

from
cls.mta

group by plaza
having max(vehiclescash) > 500;

maxcash ct plaza
--------- ------ -------

1352 122976 1
1040 122976 2
1594 122976 3
1368 120624 4
674 122976 5

[...]

119

D
RA
FT

2. Always: We include all counties which always have a vehiclescash greater than 500:

select
plaza
, count(1) as ct

from
cls.mta

group by plaza
having min(vehiclescash) > 500;

plaza ct
------- ----

Note that in this example we did not explicitly include the MIN in the SELECT statement.

3. On Average: We can include all counties which have, on average, vehicles cash greater than
1,000:

select
plaza,
count(1) as ct

from
cls.mta

group by plaza
having avg(vehiclescash) > 500;

plaza ct
------- ------

3 122976
11 61488

• In each of the examples above, only those counties which fulfill the aggregation criteria set forth in
the HAVING clause are returned.

3 COALESCE and NVL

• There is a special CASE statement that is frequently used to handle null values, called COALESCE.1

COALESCE returns the first non-Null value it encounters. Consider the following example data:

Table 7.1: Table with missing values: tab missing

SID phone1 phone2

1 (111) 123 4567 (222) 123 4567
2 (333) 123 4567
3 (444) 123 4567
4

We could run the following queries on this:

1In Oracle the statement is NVL.

120

D
RA
FT

select
coalesce(phone1, phone2) as phone, SID

from
tab_missing;

phone | SID
---------------+------
(111) 123 4567 | 1
(333) 123 4567 | 2
(444) 123 4567 | 3

| 4

You can see that for each row the query returns the first non-null value it finds. For the fourth SID,
however, all values are Null and a Null is returned.

121

D
RA
FT

122

D
RA
FT

Chapter 8

Joins

123

D
RA
FT

Contents

1 Joins . 125

2 UNION and UNION ALL . 132

3 Best Practices when Combining Tables . 134

4 Intermediate Joins . 136

4.1 Aggregations on-self . 136

4.2 Cross Joins for missing values . 137

5 Statistical Analysis in SQL . 138

124

D
RA
FT

1 Joins

In this section we combine tables using the JOIN operator. There are a number of different ways to combine
data, which we will go into now.

• Lets consider the following two tables, which we will use to demonstrate the different types of joins:

Table 8.1: Join Example Tables

Table 8.2: Class1 Table

sname grade

John A
Jim A
Kyle C

Table 8.3: Class2 Table

sname grade

John A
Jim B

Ashley F

• The first join we will consider is the LEFT JOIN, which keeps all records from the first table (the
“Left Hand Side” or “LHS”) and only those records that match from the second table (or the “Right
Hand Side” or “RHS”):

select
class1.*, class2.*

from
cls.class1

left join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B
Kyle C

There are two components to the JOIN syntax. The first, within the FROM clause, specifies the
type of JOIN (in this case “LEFT JOIN”) to attempt and the second, the ON clause, determines
how two rows are defined to match. The ON operator acts like a WHERE clause in that any boolean
condition or set of conditions can be put in it by using parenthesis, AND and OR. Any type the
expression within the ON operator is true, the database regards those rows as matching. Mentally,
you should think of a JOIN as going through every possible combination of rows and deciding if a
row matches with another based on the match criteria in the ON clause.

In this SELECT statement we choose all columns from both class1 and class2 tables. Since the
columns have the same names in both tables we see that the column names are repeated in the
resulting table.

This LEFT JOIN leaves the second sname and grade Null for the “Kyle” row from the first table, as
there is no matching row in the second table.

• There is also a RIGHT JOIN, which, similar to the LEFT JOIN, keeps all rows from the right-hand,
or second, table:

125

D
RA
FT

select
class1.*, class2.*

from
cls.class1

right join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

Ashley F

• If we only want to consider rows that are in both tables, we use an INNER JOIN, the syntax for
which is just JOIN:

select
class1.*, class2.*

from
cls.class1

join
cls.class2

on class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

In this case, only John and Jim are returned since they are the only individuals that are in both
tables.

• A FULL JOIN (sometimes called an OUTER JOIN, or FULL OUTER JOIN) includes all rows from
either table:

126

D
RA
FT

select
class1.*, class2.*

from
cls.class1

full join
cls.class2

on
class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B
Kyle C

Ashley F

Because “Kyle” <> “Ashley”, these two rows are kept separate.

• In a few instances we may wish to create every possible combination of rows1, which we call a CROSS
JOIN. The syntax for a CROSS JOIN is below:

select
class1.*, class2.*

from
cls.class1

cross join
cls.class2;

sname grade sname grade
------- ------- ------- -------
John A John A
John A Jim B
John A Ashley F
Jim A John A
Jim A Jim B
[...]

Note that this returns every possible combination of rows. Since we selected “*” it also returns every
column – which means columns with duplicated names. If we wanted to only return a few of the
columns we could do the following:

1This is sometimes called a Cartesian product.

127

D
RA
FT

select
class1.sname as name1
, class2.sname as name2
, class1.grade as grade1
, class2.grade as grade2

from
cls.class1

cross join
cls.class2;

name1 name2 grade1 grade2
------- ------- -------- --------
John John A A
John Jim A B
John Ashley A F
Jim John A A
Jim Jim A B
[...]

• If the columns that we are matching on have the same name than we can use USING, rather than
ON to specify the matching column. Doing so generates a different type of output:

select

*
from

cls.class1
full join

cls.class2
USING(sname);

sname grade grade
------- ------- -------
John A A
Jim A B
Kyle C
Ashley F

In this example, the database combined the sname column into a single column! USING tells the
database that the columns represent the same data and need not be repeated. This type of “natural”
join is extremely powerful when you are joining two tables which represent similar data.

• The following query demonstrates USING with multiple columns:

128

D
RA
FT

select

*
from

cls.class1
inner join

cls.class2
using(sname, grade);

sname grade
------- -------
John A

• Let’s look at what the following returns, which uses both a USING with multiple columns and a
FULL JOIN:

select

*
from

cls.class1
full join

cls.class2
using(sname, grade);

sname grade
------- -------
John A
Jim A
Kyle C
Jim B
Ashley F

In this example, the database returns 5 rows, since the only row that matches on both sname and
grade is John. People should study more.

• What does the following return?

129

D
RA
FT

select * from
cls.class1

left join
cls.class2

on class1.sname = class2.sname
and class1.grade >= class2.grade;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A
Kyle C

Since this is a LEFT JOIN, this will include all values from the left hand table, but it will only match
those which are alphabetically earlier or the same as the right hand side table. In other words, this
returns only those rows from the right hand side where the person did better in class1.

sname | grade | sname | grade
-------+-------+-------+-------
Jim | A | |
John | A | John | A
Kyle | C | |
(3 rows)

• Keep in mind that the USING clause creates a synthetic column using a similar construct as a CASE
statement:

select
sname as from_using
, class1.sname as lhs
, class2.sname as rhs
, CASE

when class1.sname is not null then class1.sname
else class2.sname

END as coal
from

cls.class1
full join

cls.class2
using(sname);

from_using lhs rhs coal
------------ ----- ------ ------
John John John John
Jim Jim Jim Jim
Kyle Kyle Kyle
Ashley Ashley Ashley

130

D
RA
FT

The column “from using” and “coal” are created as the output of the using statement and from the
coalesce statement; from the above they are clearly the same. Importantly, the above statement also
demonstrates that in the SELECT statement there is still access to the underlying, original columns.

• In the above examples we used ON to tell the database which columns to match. However, we can
also use the WHERE clause to match. For example:

select
class1.*, class2.*

from
cls.class1

cross join
cls.class2

where class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

generates the same output as our inner join. In this case, we used a cross join to generate all possible
combinations of rows and only kept those rows where the sname was the same in both columns via
a WHERE clause.

• The following syntax is also used when doing cross joins.

select

*
from

cls.class1, cls.class2
where class1.sname = class2.sname;

sname grade sname grade
------- ------- ------- -------
John A John A
Jim A Jim B

This can also be done with more than two tables.

• We can also combine ON and WHERE:

131

D
RA
FT

select
class1.*, class2.*

from
cls.class1

left join
cls.class2

on
class1.sname = class2.sname

where
class1.grade = class2.grade;

sname grade sname grade
------- ------- ------- -------
John A John A

The above example uses a left join and a where clause to recreate an inner join.

• Very importantly, we can use any boolean expression as our JOIN condition as in the following
example where we create a table which only contains those rows, in class1, which are not the same
name! Note that this joins class1 on itself!

select
lhs.sname as lname, lhs.grade as lgrade, rhs.*

from
cls.class1 as lhs

left join
cls.class1 as rhs

on lhs.sname <> rhs.sname;

lname lgrade sname grade
------- -------- ------- -------
John A Jim A
John A Kyle C
Jim A John A
Jim A Kyle C
Kyle C John A
[...]

2 UNION and UNION ALL

• Another way to combine data is using UNION and UNION ALL. While the JOIN syntax puts tables
side-by-side, the UNION and UNION ALL tables stack tables vertically on each other – appending
(or concatenating) the data vertically.

• The syntax for UNION and UNION ALL looks a bit different than the syntax for other SQL com-
mands since they behave not on tables, but on queries. Consider the following example of the UNION
ALL command:

132

D
RA
FT

select sname from cls.class1
UNION ALL
select sname from cls.class2

sname

John
Jim
Kyle
John
Jim
[...]

• The columns have to be selected in the correct order. The following query, which switches the order
of grade and sname in the second table will not return properly aligned columns.

select sname, grade from cls.class1
UNION ALL
select grade, sname from cls.class2

sname grade
------- -------
John A
Jim A
Kyle C
A John
B Jim
[...]

• The column types are also defined by the first statement in the command, so all SELECT statements
must generate compatible columns. For example if our first query had an integer in the first column
position then the second query can’t put a string in the first position.

• The difference between UNION and UNION ALL is that UNION will automatically deduplicate
records. For example, consider the following query:

select sname from cls.class1
UNION
select sname from cls.class2

sname

Kyle
John
Ashley
Jim

In this case only four rows are returned since John and Jim are duplicates. UNION removes whole,

133

D
RA
FT

exact, row duplicates. Every column in the row must be the same for UNION to decide two rows are
duplicates.

• Keep in mind that using UNION is very expensive as removing duplicates is a costly process.2

• We can use the UNION command to determine the best grade that a student received, as in the
following query.

select sname, MIN(grade) as best_grade
from

(select sname, grade from cls.class1
UNION ALL
select sname, grade from cls.class2) as innerQ

group by 1;

sname best_grade
------- ------------
Kyle C
Jim A
Ashley F
John A

• As we said above, both UNION and UNION ALL work on statements not tables, meaning that the
following command will not complete successfully:

select sname, MIN(grade) as best_grade
from

(select sname, grade from cls.class1) as lhs1
UNION ALL
(select sname, grade from cls.class2) as lhs2

group by 1;

3 Best Practices when Combining Tables

1. Always have a Unique Side. When you join two tables on a particular column, make sure that
the column that you are joining on is unique on one side. If you join on a column with duplicates
on both sides the database is going to create rows (via the cartesian product), a generally negative
outcome.

• Up to this point we only considered the case where both sides are unique. Let’s assume that
are tables now look like the below:

In the tables above, there are multiple observations for the name “John”. The lack of uniqueness
causes problems, as we will see in the following query:

2On my computer, using the NYSE dataset, it took 2 seconds to count the number of rows after a UNION ALL between
2010 and 2011 while doing a UNION took over five times as long.

134

D
RA
FT

Table 8.4: Join Example Tables (II)

Table 8.5: Class3 Table

sname grade

John A
John B
Kyle C

Table 8.6: Class4 Table

sname grade

John A
John B
John C
Tim F

select
class3.sname as lname
, class3.grade as lgrade
, class4.sname as rname
, class4.grade as rgrade

from
cls.class3

left join
cls.class4

on class3.sname = class4.sname;

lname lgrade rname rgrade
------- -------- ------- --------
John A John A
John A John B
John A John C
John A John A
John A John B
[...]

• In this case, we can see that every pair-wise combination of the matching rows (6 = 3 · 2 for
John) was generated by the query. In other words, the “ON” clause behaved as if a “WHERE”
clause; each time a row matched it was returned.

• Another way of thinking about this is that when the database encounters multiple matching
rows it behaves similar to a cross-join.

2. When using JOIN, label each of the tables that you are joining on based either on:

(a) Their location or position (“LHS”, “RHS”, etc.)

(b) Their contents/the data that they contain

Naming tables in this way leads to increased readability.

3. In terms of efficiency, joins should be undertaken in the following order:

(i) inner

(ii) left

(iii) outer

(iv) cross

135

D
RA
FT

There are two major reasons for this order: (1) Readability (we read left to right and combining left
and right joins creates difficult to understand queries) and (2) Query optimization (which we will
touch upon later).

4. Be consistent with USING/ON/WHERE. I recommend using WHERE for filtering conditions, ON
for matching and USING only if it makes sense. Mixing and matching yields difficult to understand
queries.

5. No Nulls in join columns. Nulls do not match each other, so joining on a null always returns false!
In other words, if you do a left join, the Nulls on the left are kept while the Nulls on the right are
dropped.

4 Intermediate Joins

In this section we examine two common patterns around joins: (1) using cross joins to find missing data
and (2) using joins with an aggregation to create datasets.

4.1 Aggregations on-self

• Consider trying to figure out what percentage of cars use EZ pass, outbound, by hour of the day. In
other words we want to calculate the total number of cars which use EZ pass outbound each hour,
take the sum and then divide each row. In order to do this we use a join:

SELECT
hr, perhr::float / tot as pct

FROM
(select sum(vehiclesez) as perhr, hr from cls.mta
where direction = 'I' group by 2) as lhs

CROSS JOIN
(select sum(vehiclesez) as tot from cls.mta
where direction = 'I') as rhs

hr pct
---- ----------

0 0.0155521
1 0.00869534
2 0.00568274
3 0.00519111
4 0.0080607

[...]

• What if we calculate this percentage, but by plaza? In this case we do a similar operation, but we
now we join based on plaza:

136

D
RA
FT

SELECT
plaza, hr, perhr::float / tot as pct

FROM
(select sum(vehiclesez) as perhr, hr, plaza from cls.mta
where direction = 'I' group by 2,3) as lhs

JOIN
(select sum(vehiclesez) as tot, plaza from cls.mta
where direction = 'I'
group by plaza) as rhs

USING(plaza);

plaza hr pct
------- ---- ---------

1 0 0.019748
2 0 0.0135566
3 0 0.0181986
4 0 0.005301
5 0 0.0143782

[...]

4.2 Cross Joins for missing values

• A CROSS JOIN can be useful when looking for missing data or trying to fill-in data. Let’s consider
the case where we want to verify that there is no missing data within the MTC table. In order to do
this we can create a synthetic table which should have all values:

select * from
(select distinct mtadt from cls.mta) as lhs
cross join
(select distinct hr from cls.mta) as rhs1
cross join
(select distinct plaza from cls.mta) as rhs2
cross join
(select distinct direction from cls.mta) as rhs3

mtadt hr plaza direction
---------- ---- ------- -----------
2016-08-06 11 11 O
2016-08-06 11 11 I
2016-08-06 11 8 O
2016-08-06 11 8 I
2016-08-06 11 9 O
[...]

Each of the subqueries above contains the unique values for the particular column and cross joining
them creates a dataset containing every possible combination of the three columns. We can then join
this back against the original data to see if there are any missing values:

137

D
RA
FT

select rhs2.plaza, count(1)
from

(select distinct mtadt from cls.mta) as lhs
cross join

(select distinct hr from cls.mta) as rhs1
cross join

(select distinct plaza from cls.mta) as rhs2
cross join

(select distinct direction from cls.mta) as rhs3
left join cls.mta

using(mtadt, hr, plaza, direction)
where mta.mtadt is null

group by 1
order by count(1) desc;

plaza count
------- -------

11 61536
4 2400
8 240
5 48
1 48

[...]

From this we can see that there are a number of missing observations and the plazas which are
missing!

5 Statistical Analysis in SQL

In this section we will calculate a number of different features of the stock data.

1. Calculate the variance of the closing price of each stock for the year 2010. In particular, write a
query which returns one row per stock and two columns: the symbol and the estimated variance of
the closing price.

• In this case we will use the formula that the variance of a variable is equal to:

V AR[X] = E[(X − X̄)2]

=
1

n

n∑
i=1

(
Xi − X̄

)2
which we will estimate over our data.3

• The difficult part of computing this value is that we need to make sure that on each row of our
dataset is the appropriate X̄, which we deal with by calculating it in a separate query and then
joining back on the original stocks data, as can be seen in the query below:

3While some authors divide by n− 1 rather than n in the formula, we will stick with n as it makes only a small difference
in our numbers and changing to n− 1 can be easily accomplished using the same method.

138

D
RA
FT

select
lhs.symb, avg((rhs.cls - avg_cls)ˆ2) as est_var

from
(select avg(cls) as avg_cls, symb

from stocks.s2010 group by 2) as lhs
join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
group by 1;

symb est_var
------ ----------
A 6.00884
AA 22.6683
AAME 0.0532238
AAN 3.29018
AAON 0.423454
[...]

2. Stocks can have very large order of magnitude differences in key characteristics, such as volume and
price. In order to complete analysis on these values, statisticians often normalize the values. One
such normalization is the Z-score, which involves taking each value, subtracting off its mean and
dividing by the standard deviation:

Zi =
xi − x̄
σx

where x̄ is the mean and σx is the standard deviation of the variable in question.

Another method of normalization is linear, where the minimum takes on the value 0 and the maximum
takes on the value of 1. This linear transformation can be computed as follows:

Li =
xi −min(x)

max(x)−min(x)

• Let’s calculate the linear normalization of the closing price for each stock individually. Specif-
ically I want to return the date, symbol, closing price and normalized closing price for each
stock.

• Just like in the previous example, we need to compute an aggregate (in this case, the minimum
and maximum values of the closing price and join it back to the original data. Once this is
complete we can then apply the formula.

139

D
RA
FT

select
lhs.symb, retdate, rhs.cls,

(rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as n_cls
from

(select max(cls) as max_cls, min(cls) as min_cls, symb
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
order by 1,2,3;

symb retdate cls n_cls
------ ---------- ------- --------
A 2010-01-04 22.3891 0.289632
A 2010-01-05 22.1459 0.26689
A 2010-01-06 22.0672 0.259531
A 2010-01-07 22.0386 0.256857
A 2010-01-08 22.0315 0.256193
[...]

• Note that running the above query will fail! Why? Because some stocks have min and max
closing prices which are equal. In order to avoid this, we can remove those rows:

select
lhs.symb, retdate, rhs.cls,

(rhs.cls - lhs.min_cls) /(lhs.max_cls - lhs.min_cls) as n_cls
from

(select max(cls) as max_cls, min(cls) as min_cls, symb
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls != max_cls
order by 1,2;

symb retdate cls n_cls
------ ---------- ------- --------
A 2010-01-04 22.3891 0.289632
A 2010-01-05 22.1459 0.26689
A 2010-01-06 22.0672 0.259531
A 2010-01-07 22.0386 0.256857
A 2010-01-08 22.0315 0.256193
[...]

3. Calculate the β and α coefficients of a simple linear regression of price on volume.

• As a reminder, if we run a simple linear regression of the form

y = α+ βx

140

D
RA
FT

, then our estimated coefficients are equal to:

β̂ =
COV (X,Y)

V AR(X)

=
1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ)
1
n

∑n
i=1(Xi − X̄)2

α̂ = Ȳ − β̂X̄

• We can calculate this using the following query:

select
beta, acls - beta * avol as alpha

from
(select

avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010) as IQ;

beta alpha
----------- -------
0.000754955 1571.76

• Alternatively, we could be a bit more clever to remove the outer query:

select
avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010;

beta alpha avol acls
----------- ------- ----------- -------
0.000754955 1571.76 1.49898e+06 2703.42

This calculation retains the same information as the previous, but avoids using an inner query.

4. We can also calculate the R2 for this regression using the following formula:

R2 = 1−
∑n

i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

= 1−
∑n

i=1(yi − (α+ βxi))
2∑n

i=1(yi − ȳ)2

141

D
RA
FT

• To complete this, we start with the previous query which generated alpha and beta and modify
it to keep both the average volume and average closing price. We then CROSS JOIN this single
row against the original stocks data:

select
max(alpha) as alpha
, max(beta) as beta
, 1 - avg((cls - (alpha + beta * vol))ˆ2) /avg((cls - acls)ˆ2) as r2

from
(select

avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select avg(cls) as acls, avg(vol) as avol

from stocks.s2010) as lhs
cross join

stocks.s2010) as lhs
cross join

stocks.s2010 as rhs;

alpha beta r2
------- ----------- ----------
1571.76 0.000754955 0.00121957

• Sadly our results are quite poor. The R2 that I get is equal to 0.00122.

5. Why don’t we repeat the analysis, this time by stock?

• Let’s first compute our α and β̂ by stock:

select
lhs.symb
, avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(cls) as acls, avg(vol) as avol, count(1) as ct

from stocks.s2010 group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1;

symb beta alpha avol acls
------ ------------ -------- ---------------- --------
ABC -3.18636e-08 30.316 3.63933e+06 30.2001
CLF -1.22468e-06 67.6353 5.69978e+06 60.6549
SRDX -4.75616e-06 16.2657 107476 15.7546
PDLI -3.88147e-10 6.00289 2.73978e+06 6.00183
VIAB -3.80486e-07 35.7868 4.41476e+06 34.107
[...]

notice that the query above added an additional filter to remove stocks with less than 100 data
points. There are about 250 total trading days in our dataset, so by adding this filter we remove
those stocks which are only in the data a small number of times. This also avoid any potential
divide by zero error.

• We can also compute our r2 by stock, as demonstrated below. Once again, we limit ourselves
to stocks which have more than 100 data points.

142

D
RA
FT

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((cls - (alpha + beta * vol))ˆ2) / avg((cls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) as beta
, max(acls) - avg((cls - acls) * (vol - avol)) / avg((vol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(cls) as acls, avg(vol) as avol, count(1) as ct

from stocks.s2010 group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

stocks.s2010 as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ -------- ------------ --------
HOV 3.4266 3.46633e-07 0.612527
MGIC 2.37857 1.78381e-06 0.582692
HPJ 3.54329 7.42622e-06 0.55797
FTK 1.36355 8.33776e-07 0.524931
NUV 10.1132 -1.03103e-06 0.516196
[...]

6. Why not with scaled parameters?

143

D
RA
FT

with sd as (
select

lhs.symb, retdate
, (rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as ncls
, (rhs.vol::float - lhs.min_vol) / (lhs.max_vol - lhs.min_vol) as nvol

from
(select max(cls) as max_cls, min(cls) as min_cls

, symb, max(vol) as max_vol, min(vol) as min_vol
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls <> max_cls and min_vol <> max_vol
)

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((ncls - (alpha + beta * nvol))ˆ2) / avg((ncls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) as beta
, max(acls) - avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(ncls) as acls, avg(nvol) as avol, count(1) as ct

from sd group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ --------- --------- --------
HOV 0.0333546 0.823546 0.612527
MGIC 0.125339 1.27091 0.582692
HPJ 0.0803212 0.976241 0.55797
FTK 0.076173 1.08304 0.524931
NUV 0.858118 -1.1852 0.516196
[...]

7. What about Z-scaled? STOPPED HERE.

144

D
RA
FT

with sd as (
select

lhs.symb, retdate
, (rhs.cls - lhs.min_cls) / (lhs.max_cls - lhs.min_cls) as ncls
, (rhs.vol::float - lhs.min_vol) / (lhs.max_vol - lhs.min_vol) as nvol

from
(select max(cls) as max_cls, min(cls) as min_cls

, symb, max(vol) as max_vol, min(vol) as min_vol
from stocks.s2010
group by symb) as lhs

join
stocks.s2010 as rhs

on lhs.symb = rhs.symb
where min_cls <> max_cls and min_vol <> max_vol
)

select
lhs.symb
, max(alpha) as alpha
, max(beta) as beta
, 1 - avg((ncls - (alpha + beta * nvol))ˆ2) / avg((ncls - acls)ˆ2) as r2

from
(select

lhs.symb
, avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) as beta
, max(acls) - avg((ncls - acls) * (nvol - avol)) / avg((nvol - avol)ˆ2) * max(avol) as alpha
, max(avol) as avol
, max (acls) as acls

from
(select symb, avg(ncls) as acls, avg(nvol) as avol, count(1) as ct

from sd group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
where ct > 100

group by 1) as lhs
left join

sd as rhs
on lhs.symb = rhs.symb
group by lhs.symb
order by r2 desc;

symb alpha beta r2
------ --------- --------- --------
HOV 0.0333546 0.823546 0.612527
MGIC 0.125339 1.27091 0.582692
HPJ 0.0803212 0.976241 0.55797
FTK 0.076173 1.08304 0.524931
NUV 0.858118 -1.1852 0.516196
[...]

145

D
RA
FT

146

D
RA
FT

Chapter 9

Advanced Joins

147

D
RA
FT

Contents

1 The Shape of Data . 149

2 Revenue over time & Advanced Joins . 151

2.1 First Value . 152

2.2 Most common value by group . 156

2.3 Cumulative Sum . 158

2.4 Rolling 90 day Calculation . 160

2.5 Cohorted Monthly Revenue . 161

148

D
RA
FT

1 The Shape of Data

• Up to this point we have taken the data given to us as a given: The columns and rows are what they
are. However, it is often useful to reshape the data by interchanging rows and columns for other
purposes. For example, consider the following two tables:

Table 9.1: Example of wide data: house wide

owner name NoBedroomHouse1 NoBedRoomHouse2 CostHouse1 CostHouse2

Rick 3 2 250000 125000
Harry 2 3 250000 125000
James 1 125000
Lenka 3 450000

Table 9.2: Example of long data: house long

owner name HouseNo BedRoom Cost

Rick 1 3 250000
Rick 2 2 125000

Harry 1 2 250000
Harry 2 3 125000
James 1 1 125000
Lenka 1 3 450000

• We would characterize the first table as being “wide” and the second as being “long.” While both
tables contain the same information depending on the application one shape can be easier to use
than the other. Consider the following two questions:

1. What is the average cost of a person’s second house?

select avg(CostHouse2) as avg_cost from cls.house_wide;

avg_cost

125000

select avg(Cost) from cls.house_long where HouseNo = 2;

avg

125000

2. What is the average cost of any house?

149

D
RA
FT

select
(sum(CostHouse1) + sum(CostHouse2))

/ (count(CostHouse1) + count(CostHouse2)) as avg_cost
from cls.house_wide;

avg_cost

220833

select avg(Cost) as avg_cost from cls.house_long;

avg_cost

217500

• Looking at the examples above you can see that, even if the case of these simple statistics different
data shapes can make a big difference. This is especially important when exporting data to another
program.

• We can use GROUP BY and CASE statements to reshape data from long-to-wide:

select
owner_name
, max(case when HouseNo = 1

then BedRoom else null end) as NoBedroomHouse1
, max(case when HouseNo = 2

then BedRoom else null end) as NoBedroomHouse2
, max(case when HouseNo = 1

then Cost else null end) as CostHouse1
, max(case when HouseNo = 2

then Cost else null end) as CostHouse2
from

cls.house_long
group by 1;

owner_name nobedroomhouse1 nobedroomhouse2 costhouse1 costhouse2
------------ ----------------- ----------------- ------------ ------------
Rick 3 2 230000 125000
Lenka 3 450000
James 1 125000
Harry 2 3 250000 125000

• We can use JOIN and UNION ALL to move between wide-to-long:

150

D
RA
FT

select
lhs.owner_name
, lhs.houseNo
, case

when houseNo = 1 then nobedroomhouse1
when houseNo = 2 then nobedroomhouse2
else null end as nbr

, case when houseNo = 1 then costhouse1
when houseNo = 2 then costhouse2
else null end as ch

from
(select distinct owner_name, 1 as houseNo from cls.house_wide

union all
select distinct owner_name, 2 as houseNo from cls.house_wide) as lhs

LEFT JOIN
cls.house_wide

using(owner_name)
where case

when houseNo = 1 then nobedroomhouse1
when houseNo = 2 then nobedroomhouse2

else null end is not null;

owner_name houseno nbr ch
------------ --------- ----- ------
James 1 1 125000
Rick 1 3 250000
Lenka 1 3 450000
Harry 1 2 250000
Rick 2 2 125000
[...]

• These constructs – wide vs. long are important to be able to swap between. Other programming
languages often have commands like “pivot”, “reshape”, “rollup” or “crosstab” that generate data
in different forms, sometimes with aggregations occurring.

2 Revenue over time & Advanced Joins

• In this section we consider a common application for reshaping data and that is calculating business
statistics from transaction data.

• Consider the following dataset which contains information on a business. This contains transaction
information where each row represents a particular event. In this case, the event under consideration
is the purchase of special soap bars. There are two types of transactions: single bars and double bars
while there are two types: “Unit” which represents a one-off transaction and “Sub” which represents
a subscription.

• A very common task when analyzing transaction data is understanding the revenue generated by a
customer over time. This number (sometimes called LTV or ARPU) is based on “cohorts” of users,
or defined groups of users with similar characteristics.

• Using the above data, how would we calculate the average amount spent by each customer?

151

D
RA
FT

Figure 9.1: Trans table, 1,063,491 rows

orderid userid trans type locale trans dt units coupon months amt

0 1 Double bar Unit U.S. 2016-05-09 2 39.98
1 2 Single bar Unit U.S. 2018-07-09 3 35.97
2 2 Single bar Unit U.S. 2018-08-25 1 11.99
3 2 Single bar Unit U.S. 2018-02-16 1 11.99
4 3 Single bar Unit U.S. 2016-02-28 4 47.96
5 4 Double bar Sub Canada 2018-03-09 5 25 2 74.96
6 4 Double bar Sub Canada 2018-05-09 5 25 2 74.96
7 5 Single bar Sub Canada 2016-01-05 4 35 2 31.17
8 6 Double bar Unit U.S. 2017-04-13 2 39.98
9 6 Double bar Unit U.S. 2016-07-28 4 79.96

select
sum(amt) / count(distinct userid) as amtPerUser

from cls.trans;

amtperuser

69.4199

2.1 First Value

• Let’s say that we were interested in understanding how relative countries monetized, how would we
calculate the amount per user for each country? In other words, if we defined the cohort based on
where a user lives, how would the countries compare?

select
locale
, sum(amt) / count(distinct userid) as amtPerUser

from
cls.trans

group by 1;

locale amtperuser
-------- ------------
Canada 63.2709
Mexico 72.5456
U.S. 62.5774

• What happens if a user moves? How is the average amount per country affected if users can move?
How should we handle calculating the average amount per user per country? We would probably
want to take the first one that a user appears in:

152

D
RA
FT

select
new_locale
, sum(amt) / count(distinct lhs.userid) as amtPerUser

from
(select

min(trans_dt) as mindt, userid
from

cls.trans
group by 2) as lhs

join
(select

userid, locale as new_locale, trans_dt
from

cls.trans) as rhs
on

lhs.mindt = rhs.trans_dt
and lhs.userid = rhs.userid

left join
cls.trans

on lhs.userid = trans.userid
group by 1;

new_locale amtperuser
------------ ------------
Canada 69.3196
Mexico 106.897
U.S. 65.8775

Take a look at how the query works. This is an example of identifying a “first value” of a customer.
In this case we first identify the column that we are interested in ordering by, identifying the row of
interest and then re-joining to the original data based on that row.

• What is the total amount spent by customers by first purchase type (subscription vs. unit sale)? In
order to do this we must identify what the first purchase was for each user:

153

D
RA
FT

select
lhs.userid, trans.type

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

userid type
-------- ------

4 Units
6 Units
7 Sub
10 Sub
21 Units

[...]

What if we a user can make multiple purchases in a day – What do we do in this case? Lets assume
that we want to prioritize Subscriptions over Units, so that if a user makes multiple purchases in a
day that they are flagged as subscribers:

154

D
RA
FT

select
lhs.userid
, max(case when trans.type = 'Sub' then 1

else 0 end) as subscriber_flag
, min(firstdt) as firstdt

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

group by 1;

userid subscriber_flag firstdt
-------- ----------------- ----------

84925 0 2018-05-10
165533 0 2018-10-12
162195 0 2018-11-14
47051 0 2016-03-06
161180 1 2016-01-18

[...]

• Now that we have identified the type of user, we then need to re-remerge that back onto the data to
get the rest of the information that we need:

155

D
RA
FT

select
subscriber_flag
, count(distinct outerLHS.userid) as numusers
, sum(amt) as totalamt
, sum(amt) / count(distinct outerLHS.userid) as avg

from
(select

lhs.userid
, max(case when type = 'Sub' then 1

else 0 end) as subscriber_flag
, min(firstdt) as firstdt

from
(select

userid, min(trans_dt) as firstdt
from

cls.trans
group by 1) as lhs

left join
cls.trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.trans_dt

group by 1) as outerLHS
left join cls.trans
using(userid)
group by 1;

subscriber_flag numusers totalamt avg
----------------- ---------- ----------- -------

0 379309 2.40611e+07 63.434
1 194980 1.5806e+07 81.0648

2.2 Most common value by group

• Another very common task is to find the most common value for a particular group. For example,
lets say that we want to figure out what the most common value is among a particular sub group.

• For example, what is the most common order amount (dollars) for each country?

156

D
RA
FT

select
locale, amt, count(1)

from
cls.trans

group by 1,2
order by 3 desc;

locale amt count
-------- ----- -------
U.S. 39.98 65523
U.S. 23.98 64606
U.S. 59.97 51018
U.S. 35.97 50809
U.S. 19.99 34005
[...]

• Looking at the query above we can see that the most common amount for the US is 39.98, while in
Canada and Mexico the amounts are 25.99 and 17.98 respectively. We now want to write a query
which identifies just those three values. To do this we need to take this table and join it on itself.
Lets look at the following query:

select lhs.locale, lhs.amt, lhs.ct
from

(select locale, amt, count(1) as ct from cls.trans
group by 1,2) as lhs

left join
(select locale, amt, count(1) as ct from cls.trans
group by 1,2) as rhs

on lhs.locale = rhs.locale and lhs.ct <= rhs.ct
group by 1,2,3
having count(rhs.*) = 1;

locale amt ct
-------- ----- -----
Canada 25.99 24411
Mexico 35.97 21847
U.S. 39.98 65523

• This query works by exploding the dataset via the left join and then collapsing it down along all the
left hand side variables. The join itself only matches those counts from the left hand side which are
less than or equal to those on the right hand. In other words, this creates a row numbering based on
the original count! If you want to see this, run the previous query while removing the final GROUP
BY and HAVING.

• This technique can be used to also find the least common value (swapping the inequality to a greater
than) or even the second or third highest value (how would this be done?)

157

D
RA
FT

2.3 Cumulative Sum

• Another common, difficult query to write is to write a cumulative sum, which adds up all values
previous to and including the current row. We need to use the same technique as in the previous
examples, but this time use the trans dt field to help us order the columns:

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, amt, trans_dt from cls.trans) as lhs

left join
(select userid, amt, trans_dt from cls.trans) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09 23.98
2 12.99 2018-08-25 12.99
3 43.16 2017-03-05 43.16
3 43.16 2017-04-05 86.32
4 59.95 2016-02-28 59.95

[...]

• What if there were multiple values on a particular day?

• In the case of multiple days you the above query will actually generate data since the merge is not
unique on each side! This is bad – the sum of the amount of money should be conserved, but if we
generate rows the number will actually increase. So how would we get around this? We can sum up
by date to make sure that each row is unique by date:

158

D
RA
FT

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as lhs

left join
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09 23.98
2 12.99 2018-08-25 12.99
3 43.16 2017-03-05 43.16
3 43.16 2017-04-05 86.32
4 59.95 2016-02-28 59.95

[...]

By doing this aggregation we now avoid any creating any data.

• What is we wanted to do the above, but not include the current date? To do this we modify the join
condition:

159

D
RA
FT

select
lhs.userid, lhs.amt, lhs.trans_dt
, sum(rhs.amt) as cumsum

from
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as lhs

left join
(select userid, sum(amt) as amt, trans_dt

from cls.trans
group by 1,3) as rhs

on lhs.userid = rhs.userid and lhs.trans_dt > rhs.trans_dt
group by 1,2,3
order by 1,3;

userid amt trans_dt cumsum
-------- ----- ---------- --------

1 23.98 2016-05-09
2 12.99 2018-08-25
3 43.16 2017-03-05
3 43.16 2017-04-05 43.16
4 59.95 2016-02-28

[...]

2.4 Rolling 90 day Calculation

• What happens when we move into a new locale? If we calculate the average revenue using the ways
described above then any new country will look terrible because it is simply younger than the other
countries.

• To get rid of this issue we always cohort users by when they begin a service. This allows us to compare
apples-to-apples, rather than biasing our analysis toward those cohorts which have had more time to
matriculate within the system.

• Lets say that we wish to do a rolling calculation – say I want to calculate the average transaction
size for the first three months for each customer?

160

D
RA
FT

select lhs.userid, lhs.trans_dt, lhs.amt, sum(rhs.amt)
from

(select userid, sum(amt) as amt, trans_dt
from cls.trans

group by 1,3) as lhs
left join

(select userid, sum(amt) as amt, trans_dt
from cls.trans

group by 1,3) as rhs
on lhs.userid = rhs.userid and lhs.trans_dt >= rhs.trans_dt

and lhs.trans_dt <= rhs.trans_dt + 90
group by lhs.userid, lhs.trans_dt, lhs.amt;

userid trans_dt amt sum
-------- ---------- ----- -----

1 2016-05-09 23.98 23.98
2 2018-08-25 12.99 12.99
3 2017-03-05 43.16 43.16
3 2017-04-05 43.16 86.32
4 2016-02-28 59.95 59.95

[...]

2.5 Cohorted Monthly Revenue

• For plotting purposes we often want to break down the revenue over time, by the cohort or install
date.

• In the following example, we calculate this by month of first transaction and then we return the
results in a wide format. Why would we return this data in a wide format? Because this allows us
to plot it fairly easily.

161

D
RA
FT

select
cohort::date
, count(distinct userid) as numusers
, sum(case when trans_dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end) as mon_0_amt

, sum(case when trans_dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end) as mon_1_amt

, sum(case when trans_dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end) as mon_2_amt

from
cls.trans as lhs

left join
(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as rhs

using(userid)
GROUP BY 1;

cohort numusers mon_0_amt mon_1_amt mon_2_amt
---------- ---------- ----------- ----------- -----------
2016-01-01 21302 891314 68182 132567
2016-02-01 19503 819087 65729.4 125490
2016-03-01 20339 850657 67757.5 130519
2016-04-01 19571 819085 65591.1 124968
2016-05-01 19408 812544 65243.4 125081
[...]

• If we wanted to do this long, we could do the following. Note that by making the data long, we don’t
need to have an artificial monthly cut-off:

162

D
RA
FT

select
rhs.cohort::date
, rhs2.newusers
, 12* (DATE_PART('year', trans_dt::date) - DATE_PART('year', rhs.cohort))
+ (DATE_PART('month', trans_dt::date) - DATE_PART('month', rhs.cohort)) as numMonths
, sum(amt) as revenue

from
cls.trans as lhs

left join
(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as rhs

using(userid)
left join

(select count(distinct userid) as newusers, cohort
from

(select userid, date_trunc('month', min(trans_dt)) as cohort
from cls.trans group by 1) as innerrhs

group by 2) as rhs2
on rhs.cohort = rhs2.cohort
GROUP BY 1,2,3

cohort newusers nummonths revenue
---------- ---------- ----------- ---------
2016-01-01 21302 0 889046
2016-01-01 21302 1 63285.4
2016-01-01 21302 2 131443
2016-01-01 21302 3 27301.3
2016-01-01 21302 4 69052.8
[...]

Annoyingly, look at what we had to do to get the number of new users within each cohort into the
resulting data!.

163

D
RA
FT

164

D
RA
FT

Chapter 10

Analytic Functions & CTE’s

165

D
RA
FT

Contents

1 Analytic Functions . 167

2 Using Analytic Functions with Transaction Data . 174

3 Common Table Expressions (“CTE”) . 176

4 CTEs with the transaction data . 178

166

D
RA
FT

1 Analytic Functions

• Analytic (sometimes called “window” or “partition” functions) functions were designed to simplify
many common complex joins.

• There are a few different use cases that they can greatly simplify.

• As an example, lets consider the case of computing the percentage of traffic which pays by cash by
hour and plaza in the inbound direction on November 10th, 2016. To do this we would need to take
our original data and then join it against the correct sum. In other words we want to return 24
columns for each plaza and the sum (vertically, across hour) should be equal to 1.

• In order to do this calculation we need to join our original data back onto the proper sum, as can be
seen in the query below.

select
plaza
, hr
, vehiclescash::float / ALLVech as pctperhr
, vehiclescash
, ALLVech

from
(select plaza, hr, vehiclescash

from cls.mta
where mtadt = '2016-11-10'
and direction = 'I') as lhs

left join
(select plaza, sum(vehiclescash) as ALLVech

from cls.mta
where mtadt = '2016-11-10'
and direction = 'I'
group by 1) as rhs

using(plaza)
order by 1,2;

plaza hr pctperhr vehiclescash allvech
------- ---- ---------- -------------- ---------

1 0 0.0230918 167 7232
1 1 0.017146 124 7232
1 2 0.00954093 69 7232
1 3 0.00940265 68 7232
1 4 0.0199115 144 7232

[...]

but this construct is a bit cumbersome.

• For another example, consider wanting to create a rolling sum over each plaza day for the number of
cars which use cash in the inbound direction.

167

D
RA
FT

select
lhs.plaza, lhs.mtadt, lhs.hr, sum(rhs.vehiclescash) as cum_sum

from
(select plaza, hr, mtadt

from cls.mta where direction = 'I') as lhs
left join

(select plaza, hr, mtadt, vehiclescash
from cls.mta where direction = 'I') as rhs

on
lhs.plaza = rhs.plaza
and lhs.hr >= rhs.hr
and lhs.mtadt = rhs.mtadt

group by lhs.plaza, lhs.mtadt, lhs.hr
order by 1,2,3

plaza mtadt hr cum_sum
------- ---------- ---- ---------

1 2010-01-01 0 474
1 2010-01-01 1 1191
1 2010-01-01 2 1855
1 2010-01-01 3 2450
1 2010-01-01 4 2997

[...]

• These two examples have a set of common properties: we need to aggregate over our table while
returning the original table. Doing this using the techniques we’ve seen in the past is cumbersome,
so we can use Analytic (sometimes called window or partition functions) to solve them.

• Analytic functions use the following syntax:

function () over(
partition by ______________
order by ______________
<WINDOW FRAME CLAUSE>

)

function can be one of any of our standard aggregate functions (SUM, COUNT, MAX, MIN, AVG)
as well as a number of functions that can only be used as analytic functions.

There are a few pieces of the syntax:

1. The OVER() clause: This tells the database to expect a window function, rather than a standard
aggregate function. This is required when using analytic functions.

2. The PARTITION BY clause: This clause tells the database how to break up the data. In other
words, it is similar to a GROUP BY in that it tells the database that rows with the same values
should be treated as a single entity or partition. The PARTITION BY clause is optional.

3. The ORDER BY clause: This clause works just as an ORDER BY in a normal SQL query
works. It tells the database how to sort the data within each partition. The ORDER BY clause
is optional. If an ORDER BY clause is present then the function is calculated in a running

168

D
RA
FT

fashion – e.g. as a running some from the start of the partition to the current row.

4. The WINDOW FRAME clause defines the region over which the function is calculated. It takes
on a number of different forms though the most common is the rows between syntax:

ROWS BETWEEN ____________ AND __________

the blanks would take on some of the following values:

– UNBOUNDED PRECEDING: from the start of the partition

– UNBOUNDED FOLLOWING: to the end of the partition

– XX PRECEDING: XX rows preceding (inclusive)

– XX FOLLOWING: XX rows following (inclusive)

– CURRENT ROW: the current row

In other words we can use this syntax to easily compute things like hourly moving averages or
just smoothing.

• Lets use analytics functions to solve the two problems at the start of this section. To solve the first
one we can do the following:

select
plaza
, hr
, vehiclescash::float/sum(vehiclescash) over(partition by plaza) as pctperhr
, vehiclescash
, sum(vehiclescash) over(partition by plaza) as ALLVech

from
cls.mta

where
mtadt = '2016-11-10' and direction = 'I'

order by 1,2;

plaza hr pctperhr vehiclescash allvech
------- ---- ---------- -------------- ---------

1 0 0.0230918 167 7232
1 1 0.017146 124 7232
1 2 0.00954093 69 7232
1 3 0.00940265 68 7232
1 4 0.0199115 144 7232

[...]

the OVER clause, which modifies the SUM function, tells the database that it is going to be computing
an aggregate function, but without the aggregation. In other words, it will return the same value for
each row.

• To be clear on what this is doing, let’s consider only a single plaza (#1) and look at the hourly data
for that day, including the analytic function:

169

D
RA
FT

select
plaza
, hr
, vehiclescash
, sum(vehiclescash) over(partition by plaza) as totalcars

from
cls.mta

where
mtadt = '2016-11-10'
and direction = 'I'
and plaza = 1;

plaza hr vehiclescash totalcars
------- ---- -------------- -----------

1 0 167 7232
1 1 124 7232
1 2 69 7232
1 3 68 7232
1 4 144 7232
1 5 215 7232
1 6 281 7232
1 7 336 7232
1 8 329 7232
1 9 304 7232
1 10 344 7232
1 11 286 7232
1 12 308 7232
1 13 375 7232
1 14 361 7232
1 15 471 7232
1 16 450 7232
1 17 451 7232
1 18 420 7232
1 19 446 7232
1 20 366 7232
1 21 322 7232
1 22 296 7232
1 23 299 7232

The sum of vehiclescash on this subset is 7,232 – the exact number returned by the analytic function
in the total cars column.

• To solve the cumulative sum problem we can use an analytic function in the following manner:

170

D
RA
FT

select
plaza, mtadt, hr,
sum(vehiclescash) over(

partition by plaza, mtadt
order by hr
rows between unbounded preceding and current row) as cum_sum

from
cls.mta

where
direction = 'I'

plaza mtadt hr cum_sum
------- ---------- ---- ---------

1 2010-01-01 0 474
1 2010-01-01 1 1191
1 2010-01-01 2 1855
1 2010-01-01 3 2450
1 2010-01-01 4 2997

[...]

• To get more insight into the specifics of how analytic functions work, consider the following table:

GRP ORD NM C0 C1 C2 C3

1 1 5 65 33 5 11
1 2 6 65 33 11 21
1 3 10 65 33 21 28
1 4 12 65 33 33 22
2 1 12 65 32 12 22
2 2 10 65 32 22 28
2 3 6 65 32 28 20
2 4 4 65 32 32 10

In this table the raw data is GRP, ORD and NM. In order to create columns C1, C2 and C3 we use
the following syntax:

SUM(NM) OVER() as C0
SUM(NM) OVER(PARTITION BY GRP) as C1
SUM(NM) OVER(PARTITION BY GRP ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as C1
SUM(NM) OVER(PARTITION BY GRP ORDER BY ORD ASC) as C2
SUM(NM) OVER(PARTITION BY GRP ORDER BY ORD ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS C3

• NOTE: The default behavior of different analytic functions when using different sets of arguments
can lead to issues. I have a few cases memorized, but I’d recommend being as inclusive as possible
with the arguments. In the example above, C1 is presented twice, both would return the same
numbers, but the second makes it more clear as to what is happening.

• All of the aggregate functions we used in the past (MAX, MIN, COUNT and AVG) can be used with
analytic functions. For example, to create a moving average based on the last 4 hours of data in the
MTA dataset we could do the the following. Note that the ROWS BETWEEN function is inclusive,
so it will average over four hours in the below.

171

D
RA
FT

select
plaza
, direction
, hr
, mtadt
, vehiclescash + vehiclesez as totalcars
, avg(vehiclescash + vehiclesez)

OVER(PARTITION by plaza, direction
ORDER BY mtadt asc, hr asc
ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) as hravg

from
cls.mta;

plaza direction hr mtadt totalcars hravg
------- ----------- ---- ---------- ----------- -------

1 I 0 2010-01-01 889 889
1 I 1 2010-01-01 1419 1154
1 I 2 2010-01-01 1223 1177
1 I 3 2010-01-01 1075 1151.5
1 I 4 2010-01-01 945 1165.5

[...]

• If we use a WINDOW FRAME clause without an ORDER BY then the row order returned is
arbitrary.

• The only aggregate function not allowed is COUNT(DISTINCT) which cannot be used with the
OVER() clause.

• There are a number of non-aggregate functions that can be used as analytic functions:

1. LAG() and LEAD(): These functions return the value of a column from a preceding or following
row.

2. FIRST VALUE(), LAST VALUE() and NTH VALUE() : These function return the first, last,
or more generally, the nth value within a partition. Note that the NTH VALUE function takes
not only a column name, but a positional argument starting at 1. It will return null if there
aren’t enough values within the partition.

3. NTILE(): This function handles percentiles.

4. ROW NUMBER(): This function returns the row number based on the criteria established in
the clause. Note that the function ROW NUMBER() fails without an OVER clause.

5. RANK(): Returns the rank of a particular observation

6. DENSE RANK(): Returns the dense rank of a particular observation.

• The commands ROW_NUMBER, RANK and DENSE_RANK behave similarity when the data being sorted
is unique. If the data is not unique, however, these commands behave differently, as demonstrated
in the Table 10.1

• These functions allow us to easily answer a number of questions (without using JOIN). Such as what
is the correlation between the absolute (nominal) change in vehicles paying cash and the absolute
(nominal) change in vehicles paying by EZ-pass?

172

D
RA
FT

ID ROW NUMBER RANK DENSE RANK

1 1 1 1
1 2 1 1
1 3 1 1
1 4 1 1
2 5 5 2
2 6 5 2
3 7 7 3

Table 10.1: Ranking function differences when ordering by the ID columns

SELECT
CORR(CashDiff, EZDiff) as DiffCor

FROM
(SELECT

LAG(vehiclesEZ) OVER(PARTITION BY plaza
ORDER BY mtadt ASC, hr asc)

- vehiclesEZ AS EZDiff
, LAG(vehiclescash) OVER(PARTITION BY plaza

ORDER BY mtadt ASC, hr asc)
- vehiclescash AS CashDiff

FROM
cls.mta) as innerQ;

diffcor

0.744516

• These types of functions are evaluated after with SELECT after GROUP, JOIN, WHERE and
HAVING. This means that you can’t refer to them within those functions. If you want to filter on a
window function it must be contained within a subquery.

• An important caveat when using these functions, as said from the documentation (emphasis mine):

By default, if ORDER BY is supplied then the frame consists of all rows from the start of
the partition up through the current row, plus any following rows that are equal to
the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition.

This is weird:

173

D
RA
FT

select
plaza, mtadt, hr, direction
, vehiclesez
, sum(vehiclesez)

over(partition by plaza order by mtadt, hr
rows between unbounded preceding

and current row) as runningS1
, sum(vehiclesez)

over(partition by plaza order by mtadt, hr) as runningS2
from

cls.mta
where plaza = 1 and mtadt = '2010-01-01' and hr < 3;

plaza mtadt hr direction vehiclesez runnings1 runnings2
------- ---------- ---- ----------- ------------ ----------- -----------

1 2010-01-01 0 I 415 415 801
1 2010-01-01 0 O 386 801 801
1 2010-01-01 1 I 702 1503 2037
1 2010-01-01 1 O 534 2037 2037
1 2010-01-01 2 I 559 2596 3106

[...]

This is weird because when you omit ROWS BETWEEN, the running sum is computed as if rows
which have similar values in the partition are the same. The same query however, with a ROWS
BETWEEN clause computes a running sum while ignoring the duplicate rows.

2 Using Analytic Functions with Transaction Data

• In this section we return to trying to understand the revenue behavior of our soap transaction data.
Just like before we are going to use the notion of a cohort to help our analysis.

• Consider the data in Table 9.1 which contains information on users who were making certain trans-
actions.

• Let’s begin by calculating the revenue per user by locale and also by their install time period.

• We didn’t even attempt this in the previous section because it involved so many joins! Using Analytic
functions allows us to skip many of those issues!

174

D
RA
FT

select
cohort
, locale
, count(distinct userid) as numusers
, sum(case when trans_dt::date <= (cohort + '1 month'::interval)::date

then amt else 0 end) as mon_0_amt
, sum(case when trans_dt::date <= (cohort + '2 month'::interval)::date

then amt else 0 end) as mon_1_amt
, sum(case when trans_dt::date <= (cohort + '3 month'::interval)::date

then amt else 0 end) as mon_2_amt
from
(select

first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans) as innerQ

GROUP BY 1,2

cohort locale numusers mon_0_amt mon_1_amt mon_2_amt
---------- -------- ---------- ----------- ----------- -----------
2016-01-01 Canada 4706 162262 167287 223375
2016-01-01 Mexico 3920 186854 190914 224451
2016-01-01 U.S. 12676 542198 599027 637072
2016-02-01 Canada 4334 147535 152976 206147
2016-02-01 Mexico 3602 171472 175171 208097
[...]

• Let’s calculate the percentage of revenue that each transaction represents for each userid (how would
we do this without Analytic Functions?):

select
userid, trans_dt, amt
, amt/sum(amt) over(partition by userid) as pct

from
cls.trans

userid trans_dt amt pct
-------- ---------- ----- -----

1 2016-05-09 23.98 1
2 2018-08-25 12.99 1
3 2017-03-05 43.16 0.5
3 2017-04-05 43.16 0.5
4 2016-02-28 59.95 1

[...]

• I want to calculate the percentage likelihood that a person who has made X purchases makes another
one. There are a number of different ways that this can be done, but we can use analytic functions:

175

D
RA
FT

select
transNum
, sum(case when transNum = totalTrans then 1 else 0 end)::float
/ count(1) as pct
, count(1) as numerator

from
(select

row_number() over(partition by userid order by trans_dt) as transNum
, count(1) over(partition by userid) as totalTrans

from
cls.trans) as innerQ

group by 1
order by 1;

transnum pct numerator
---------- -------- -----------

1 0.529178 574289
2 0.538423 270388
3 0.58621 124805
4 0.644172 51643
5 0.686276 18376

[...]

3 Common Table Expressions (“CTE”)

• A relatively new piece of SQL syntax is WITH, which allows for tables to be defined and used
repeatedly within a query. These are called Common Table Expressions. CTE are incredibly powerful
ways of writing queries, but they can come with significant downsides (as we will discuss later).

From PostgreSQL’s documentation:

A useful property of WITH queries is that they are evaluated only once per execution of
the parent query, even if they are referred to more than once by the parent query or sibling
WITH queries. Thus, expensive calculations that are needed in multiple places can be
placed within a WITH query to avoid redundant work. Another possible application is to
prevent unwanted multiple evaluations of functions with side-effects. However, the other
side of this coin is that the optimizer is less able to push restrictions from the parent query
down into a WITH query than an ordinary sub-query. The WITH query will generally
be evaluated as written, without suppression of rows that the parent query might discard
afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to
the query demand only a limited number of rows.)

• The motivation for CTE is that they can increase readability in query by defining a table at the start
of your query which only exists for the duration of the query.

• The WITH clause is used to start a CTE and it basically sets up a derived table that can be used in
the query.

• Consider the following example:

176

D
RA
FT

with only_inbound as (select * from cls.mta where direction = 'I')

select * from only_inbound limit 100;

plaza mtadt hr direction vehiclesez vehiclescash
------- ---------- ---- ----------- ------------ --------------

2 2013-10-14 16 I 2469 336
2 2013-10-14 17 I 2853 425
2 2013-10-14 18 I 2575 394
2 2013-10-14 19 I 2422 344
2 2013-10-14 20 I 1989 339

[...]

The basic syntax of the query is that we define a table via a query at the start using a WITH clause.
This table does not have a schema and can only be referenced within that query.

• We can use CTEs with multiple queries by separating them with commas:

with
only_inbound as (select * from cls.mta where direction = 'I')
, only_outbound as (select * from cls.mta where direction = 'O')

select
plaza, mtadt, hr
, only_inbound.vehiclesez as inbound_ez
, only_outbound.vehiclesez as outbound_ez

from
only_inbound

join
only_outbound

using(plaza, mtadt, hr)

limit 10;

plaza mtadt hr inbound_ez outbound_ez
------- ---------- ---- ------------ -------------

2 2013-10-14 17 2853 2116
2 2013-10-13 11 2960 2081
2 2013-10-12 17 2847 2433
2 2013-10-10 1 189 177
2 2013-10-10 3 118 140

[...]

• Where I find CTEs to be useful is when there are multiple layers of logic that need to be implemented.
By using a CTE I can break up that application logic into separate pieces that are easier to read.

177

D
RA
FT

4 CTEs with the transaction data

• To use the WITH clause you specify a table name and then use AS. It is done before the SELECT
in the query. For example, the following creates a table that only looks at unit transactions from the
United States. We then use this figure out the average order value of these transactions:

with USUnits as (
select * from cls.trans
where locale = 'U.S.' and type = 'Units')

select avg(amt) as AOV from USUnits;

aov

43.3045

• Consider the following, more useful, example which creates an LTV dataset which has the first value
of the local of purchase.

with LTVData as (select
first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans)

select * from LTVData where locale = 'U.S.' limit 100;

locale cohort amt userid trans_dt
-------- ---------- ----- -------- ----------
U.S. 2016-05-01 23.98 1 2016-05-09
U.S. 2017-03-01 43.16 3 2017-03-05
U.S. 2017-03-01 43.16 3 2017-04-05
U.S. 2016-02-01 59.95 4 2016-02-28
U.S. 2016-01-01 99.95 6 2016-01-05
[...]

• We can also have multiple tables defined:

178

D
RA
FT

with
LTVData as (select

first_value(locale) over(partition by userid order by trans_dt asc) as locale
, date_trunc('month', first_value(trans_dt)

over(partition by userid order by trans_dt asc))::date as cohort
, amt, userid, trans_dt

from
cls.trans)

, SubScribersFirst as (select distinct userid from
(select userid, first_value(type) over(partition by userid

ORDER BY trans_dt asc, type asc) as firsttype
from cls.trans) as innerQ

where firsttype = 'Sub')
select

*
from

SubScribersFirst
left join

LTVData
using(userid);

userid locale cohort amt trans_dt
-------- -------- ---------- ----- ----------

2 Canada 2018-08-01 12.99 2018-08-25
3 U.S. 2017-03-01 43.16 2017-03-05
3 U.S. 2017-03-01 43.16 2017-04-05
5 Canada 2018-03-01 17.98 2018-03-09
5 Canada 2018-03-01 17.98 2018-05-09

[...]

• The upside of using a CTE is that they can be much easier to read.

• There are two major downsides to using CTEs:

1. Some databases do not support them (MySQL)

2. In other databases they can act as optimization barriers. In particular, consider the following
query:

179

D
RA
FT

with
LTVData as (select

first_value(locale)
over(partition by userid order by trans_dt asc) as locale

, date_trunc('month', first_value(trans_dt)
over(partition by userid order by trans_dt asc)) as cohort

, amt, userid, trans_dt
from

cls.trans)
select

*
from

LTVData
where userid = 2;

locale cohort amt userid trans_dt
-------- ------------------------- ----- -------- ----------
Canada 2018-08-01 00:00:00+00:00 12.99 2 2018-08-25

In this example, it is clear that the filter WHERE userid = 2 could be applied within the
LTVData expression. However, it is not and the database will compute the entire LTVData
before applying the filter, a costly choice. We will explore performance considerations in the
next section.

180

D
RA
FT

Chapter 11

Database Internals: Performance
Evaluation

181

D
RA
FT

Contents

1 Normalization . 183

2 Views . 185

3 Information Schema . 189

4 Performance Considerations . 190

5 Index . 194

6 Distributed Systems and the CAP Theorem . 195

182

D
RA
FT

1 Normalization

• Up to this point we have taken the data in a database as a given without consideration as to what a
database should look like. In this section we will introduce some of the major concepts around these
database design decisions, starting with the process of normalization.

• To motivate this, we need to go back in time and consider one of the common critiques of the relational
system originally proposed by Codd, which was that when data within a database is changed there
were possible negative side effects. The database normalization process is a set of rules, which if done
correctly, will limit the likelihood of this these issues, called anomalies occurring.

1. Deletion Anomaly: Non-database information lost due to deleting data within the database.

2. Insertion Anomaly: Incomplete data may mean that we cannot insert information while
keeping the database consistent.

3. Update Anomaly: When the database is updated, multiple updates may be required to
maintain consistency.

• In order to understand these issues, consider the following tables describing faculty at a school.

Figure 11.1: faculty table

FID Faculty HireDt Dept Dean1 Dean2 Mentor

1 Hamrick 8/95 Finance Big Boss Little Boss Afraid
2 Ross 2/12 Accounting Small Boss Medium Boss Uminsky
3 Parr 2/85 CS Medium Boss Small Boss Hamrick
4 Uminsky 8/11 Math Big Boss Biggest Boss Tao

• Using the table above, how do we write a query which lists all the departments?

select distinct dept from faculty;

• Using the table above, how do we write a query which returns the number of faculty?

select count(*) from faculty;

• What can go wrong:

– Deletion Anomaly: What happens when the last Ancient Greek Professor retires? The query
above will no longer return Ancient Greek as a department – but the department may still exist!

– Insertion Anomaly: We decide to introduce a new major, but have not hired a professor in
that department yet. The query above will not reflect the new department. If we add a row with
Null professor to add this information the database becomes inconsistent because the second
query above no longer returns the expected information.

– Update Anomaly: In order to get more students, Mathematics decides to change the name of
their department to “Mathematical Sciences.” In order to make this single “fact” change every
row in the database related to a math professor must change. if something happened in the
middle of the update or if some professor misreported their major next year we would have two
math departments when only one should exist.

• How do we avoid this? We normalize the table. There are a bunch of different criteria for normal-
ization forms. In our case we will go over a few of the most common (1st, 2ndand3rd normal forms.

183

D
RA
FT

Wikipedia currently lists six ordinal normal forms as well as a few named other version, the most
commonly mention (in my experience), being Boyce-Codd Normal Form (“BCNF”).

• First Normal Form:

1. All values within a cell are atomic – there is not a cell which contains multiple values. For
example, there is no column phone numbers which contains multiple phone numbers in the
same row.

2. Each table has a key which logically defines a record.

3. No repeating columns.

• In our example we violate the no repeating columns rule! So we rewrite the table to avoid this:

Figure 11.2: faculty table

FID Faculty HireDt Dept Dean DeanNo Mentor

1 Hamrick 8/95 Finance Big Boss 1 Afraid
1 Hamrick 8/95 Finance Little Boss 2 Afraid
2 Ross 2/12 Accounting Small Boss 1 Uminsky
2 Ross 2/12 Accounting Medium Boss 2 Uminsky
3 Parr 2/85 CS Medium Boss 1 Hamrick
3 Parr 2/85 CS Small Boss 2 Hamrick
4 Uminsky 8/11 Math Big Boss 1 Tao
4 Uminsky 8/11 Math Biggest Boss 2 Tao

In this table, what logically defines a row is the faculty-dean combination.

• While the table above moves us toward avoiding the anomalies mentioned above (for example, it is
now way easier to change a Dean’s name), it still is not a great solution.

• 2nd normal form continues this process, by adding an additional constraint:

1. All the rules from first normal form

2. No secondary key (or subset of other key) can have a functional dependency on another attribute.
Generally this occurs when you have repeating rows of data related to the key.

In order to implement this normalization procedure we will need to create a new table since we cannot
have any repeating rows.

FID Faculty HireDt Dept Mentor

1 Hamrick 8/95 Finance Afraid
2 Ross 2/12 Accounting Uminsky
3 Parr 2/85 CS Hamrick
4 Uminsky 8/11 Math Tao

FID Dean DeanNo

1 Big Boss 1
1 Little Boss 2
2 Small Boss 1
2 Medium Boss 2
3 Medium Boss 1
3 Small Boss 2
4 Big Boss 1
4 Biggest Boss 2

Figure 11.3: Second Normal Form

184

D
RA
FT

• However, this doesn’t alleviate all possibility of all the anomalies that we have listed. In order to do
that we can try to put the database into third normal formal:

1. All the rules for second normal form

2. “Facts” should be independent of the key information that they contain XXX

• In order to put this database in third normal form we need to add a lot of tables.

FID Faculty HireDt

1 Hamrick 8/95
2 Ross 2/12
3 Parr 2/85
4 Uminsky 8/11

FID MentorFID

1 92
2 4
3 1
4 85

FID DID DeanNo

1 1 1
1 2 2
2 3 1
2 4 2
3 4 1
3 3 2
4 1 1
4 5 2

DeptID DeptName

10 Finance
12 Accounting
13 CS
40 Math

DID Dean

1 Big Boss
2 Little Boss
3 Small Boss
4 Medium Boss
5 Biggest Boss

FID DeptID

1 10
2 12
3 13
4 40

Figure 11.4: Third Normal Form

• The positive of putting the database into third normal form is that you minimize the risk of creating
one of the anomalies specified above.

• There are, however, a few downsides:

1. Many, many tables were created.

2. The additional tables will need additional effort by the database admins (cost)

3. With the addition of some many tables, queries may require multiple joins. Doing additional
joins may put additional stress on the database.

2 Views

• Normalization frequently leads to schema with lots and lots of tables and, with that, lots of joins that
get repeated over and over again in queries. Luckily, relational databases have a system for storing
queries within the database without replicating the data. This structure is called a view and can be
considered a stored query that gets accessed like a table.

185

D
RA
FT

• For example lets consider the case where we frequently want to look at Motor Homes from Polk
county in our Iowa cars table. We could write the following query to get the data:

select * from cls.cars where countyname = 'Polk' and vehiclecat = 'Motor Home';

but if we were doing this frequently we could store this as a view instead using the following command:

CREATE VIEW cls.polk_motor_homes as (select * from cls.cars where countyname = 'Polk' and vehiclecat = 'Motor Home');

• Let’s take a look at the following query and what it returns:

select
table_name
, table_schema
, table_type

from information_schema.tables
where table_name in ('cars', 'columns');

table_name | table_schema | table_type
------------+--------------------+------------
columns | information_schema | VIEW
cars | cls | BASE TABLE

• The table type for cars is called a “BASE TABLE” and is the standard table type in the database.

• The columns table, on the other hand, is not a table, it is a view. A view is a stored query
masquerading as a table. If we run the following query and look at the results you can see the
underlying query!

select
table_name
, view_definition

from
information_schema.views

where table_name = 'columns';

table_name | view_definition
------------+--
columns | SELECT (current_database())::information_schema.s

The view definition has been truncated as the query underlying this view is long. The premise,
however, is straightforward: each time the table “columns” is accessed, the query in the view definition
is executed.

• We can define a view using any select query. If we are analyzing Motorcycle registrations from Lucas
County frequently we could execute the following query:

186

D
RA
FT

create view cls.mc_lucas as
select

countyname
, year
, registrations

from cls.cars
where countyname ='Lucas'
and vehicletype = 'Motorcycle';

This would create a view which we could easily access using SQL and it will also be in the informa-
tion schema:

select *
from mc_lucas

order by year;

countyname | year | registrations
------------+------+---------------
Lucas | 2005 | 530
Lucas | 2006 | 586
Lucas | 2007 | 606
Lucas | 2008 | 592
Lucas | 2009 | 587
Lucas | 2010 | 588
Lucas | 2011 | 578
Lucas | 2012 | 582
Lucas | 2013 | 586

select
table_name
,table_type

from
information_schema.tables

where table_name = 'mc_lucas';

table_name | table_type
------------+------------
mc_lucas | VIEW

• As before, the query defining the view is found in the “views” table:

187

D
RA
FT

select
table_name, view_definition

from information_schema.views
where table_name = 'mc_lucas';

-[RECORD 1]---+--
table_name | mc_lucas
view_definition | SELECT cars.countyname, +
| cars.year, +
| cars.registrations +
| FROM cls.cars +
| WHERE (((cars.countyname)::text = 'Lucas'::text) +
| AND ((cars.vehicletype)::text = 'Motorcycle'::text));

As shown above, the original query defining the view has been modified by the database. This
modification does not change what the query returns.

• In order to get rid of the view, we use the DROP VIEW command:

drop view cls.mc_lucas;

At which point in time the view is removed.

• Why are views useful?

– Shared Query: If an entire team is doing a set of analysis on a particular topic, using a view
to create a common table can ensure consistency between different team members.

– Version Control: As team members learn about a topic they can use views to keep everyone
up-to-date with the latest findings. For example, a table with the name “Fraud” which detects
fraudulent transactions can be updated to include new algorithms for detecting fraud without
everyone having to re-write their queries.

– Laziness: Using a view means less typing for everyone!

• Downside of views:

– Performance considerations: For a number of reasons, views tend to be less performant
than using a real query. In some relational databases, views can act as an optimization barrier.
Consider the following example:

select * from cls.mc_lucas where county = 'Lucas';

In this example, the underlying mc lucas view removes all rows which do not refer to Lucas
county. However, in some circumstances the view will act as an optimization barrier and check
each row twice, once in the view and once in the outer where, to verify that the rows are from
Lucas county.

– Proliferation of Views: If everyone on a data team is allowed to create views the tendency
is for the number of views to explode. If there are too many views it becomes difficult to find
and they go unused.

188

D
RA
FT

3 Information Schema

• Returning to Codd and his 4th rule:

The database is represented at the logical level the same way as ordinary data, so that
authorized users can apply the same relational language to its interrogation as they apply
to the regular data

• What does this mean? Reading it closely, note that Codd is saying that the database itself is
represented the same way as ordinary data. Users of the database should be able to use the same
relational language (SQL) to get answer questions about the database.

• In other words: Everything about the database is in the database itself.

• Unfortunately, this representation is specific to the SQL variant. Postgres contains database specific
information in a variety of places, though the most common place to access it is via the tables in the
schema “information schema”

– Tables contains information on the tables within the database.

– Columns contains column specific information

– Views contains information on views, which we will discuss later.

• For example:

select

*
from

information_schema.columns
where

column_name = 'registrations';

Will return all the information about the registrations column from the cars table.

• Detailed information about the columns in each table:

189

D
RA
FT

select
column_name
, data_type

from
information_schema.columns

where table_name ='cars';

column_name | data_type
-------------------+-------------------
year | integer
yearending | date
countyname | character varying
countycode | integer
motorvehicle | character varying
vehiclecat | character varying
vehicletype | character varying
tonnage | character varying
registrations | integer
annualfee | double precision
primarycountylat | double precision
primarycountylong | double precision
primarycountycord | character varying

With this query we can identify the data types associated with each column, which should match
the data types used to define the table.

• We can write queries against the information schema using any SQL functionality. For example, we
could identify all the character columns with the following:

select *
from

information_schema.columns
where

data_type like 'char%';

• A common question asked by new users of SQL is if it is possible to store additional data about the
database within a table. The answer is “Yes” – you can create a table which contains information
about the database, but that table will have to updated by hand. There is no automatically generated
data dictionary created when using a relational database.

4 Performance Considerations

Before talking about query performance and how to measure it we need to discuss two important ques-
tions:

1. How the data is stored on the hard drive:

• The easiest mental model for how data is stored on a hard drive is to consider the database as
a record player, where each row is stored on the hard drive in a random order, back-to-back. In
other words, where one row ends another row begins.

190

D
RA
FT

• There are a couple of interesting aspects to why this is important. First off, if every row is the
same length then finding the start and end of a row can be pretty easy. For example, if every
row is 25 bytes long, then going to the fifth row entails simply seeking ahead 25 · 5 = 125 bytes.
If the rows are arbitrarily long, then this process can take some time.

• The above is why there is a difference between char and varchar data types. A char datatype is
a fixed length while a varchar is of variable length. In some database systems storing data as a
char can increase performance significantly.1

• In order to find data on a database, the computer must seek around the drive, which is incredibly
slow, even on modern databases. Consider the following table which describes the relative speed
of different random access levels. 2

Figure 11.5: Access Speeds

Access type Actual time Approximated time

1 CPU cycle 0.3 ns 1 s
Level 1 cache access 0.9 ns 3 s
Level 2 cache access 2.8 ns 9 s
Level 3 cache access 12.9 ns 43 s
Main memory access 120 ns 6 min
Solid-state disk I/O 50-150 µs 2-6 days
Rotational disk I/O 1-10 ms 1-12 months
Internet: SF to NYC 40 ms 4 years
Internet: SF to UK 81 ms 8 years
Internet: SF to Australia 183 ms 19 years

Looking at this table, you can see that seeking data, even on an SSD, can be incredibly slow
in comparison to processing speeds. Fundamentally, a database stores data and attempts to
provide access to it as quickly as possibly – so it is always running up against this hurdle.

2. How the database decides how to execute a particular query:

• Basically, the database takes your SQL query and runs it through a database optimizer which
rewrites your query a number of different ways and then estimates how long each way will take.
The database will then execute the one that it believes will take the smallest amount of time.

• The query optimizer can often be wrong.

• There are a number of different ways that it can be wrong, but most of them relate to “cost” –
or how long the database thinks a particular operation will cost. In order to estimate the cost,
the database keep statistics on each table and column. For example, consider the following:

1This is not true of Postgres, which stores both varchar and char the same way.
2Source: https://madusudanan.com/blog/understanding-postgres-caching-in-depth/

191

https://madusudanan.com/blog/understanding-postgres-caching-in-depth/

D
RA
FT

select * from pg_stats where tablename = 'mta' and attname = 'direction' ;
-[RECORD 1]----------+----------------
schemaname | cls
tablename | mta
attname | direction
inherited | f
null_frac | 0
avg_width | 2
n_distinct | 2
most_common_vals | {I,O}
most_common_freqs | {0.5276,0.4724}
histogram_bounds |
correlation | 0.450035
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |

This query contains information on the direction column within the MTA table. You can see
that there is a host of information about the contents. This includes the frequency information.
However:

select count(1), direction from cls.mta group by 2;
-[RECORD 1]-----
count | 613608
direction | I
-[RECORD 2]-----
count | 552120
direction | O

ncross=# select 613608.0 / (552120 + 613608.0);
-[RECORD 1]--------------------
?column? | 0.52637321913859836943

The frequency information is not correct!

• The database itself does not keep perfect statistics on each column, it would take too long and
instead runs on estimates that it will occasionally update.

• So how can we know what the database is doing and if it is being efficient?

• Every major relational database system has a query analyzer or “explain” which gives you insight
into what the database is doing.

• With Postgres, there are two commands that are used to do this: EXPLAIN and EXPLAIN ANA-
LYZE. Generally speaking these commands do not show up nicely when using an SQL client, using
psql will result in better output.

• EXPLAIN will tell you what the query optimizer thinks will happen while EXPLAIN ANALYZE
will return both what the query optimizer thought would happen and what actually happened.

• Let’s look at the following example:

192

D
RA
FT

ncross=# explain analyze select plaza, sum(hr) from cls.mta where hr = 1 group by 1 having plaza = 2;
QUERY PLAN

--
GroupAggregate (cost=0.00..24937.72 rows=1 width=8) (actual time=149.688..149.688 rows=1 loops=1)

Group Key: plaza
-> Seq Scan on mta (cost=0.00..24911.92 rows=5159 width=8) (actual time=15.469..148.941 rows=5124 loops=1)

Filter: ((hr = 1) AND (plaza = 2))
Rows Removed by Filter: 1160604

Planning time: 0.074 ms
Execution time: 149.731 ms
(7 rows)

ncross=# explain analyze select plaza, sum(hr) from cls.mta where plaza = 2 and hr = 1 group by 1;
QUERY PLAN

--
GroupAggregate (cost=0.00..24937.72 rows=1 width=8) (actual time=137.129..137.129 rows=1 loops=1)

Group Key: plaza
-> Seq Scan on mta (cost=0.00..24911.92 rows=5159 width=8) (actual time=13.293..136.394 rows=5124 loops=1)

Filter: ((plaza = 2) AND (hr = 1))
Rows Removed by Filter: 1160604

Planning time: 0.071 ms
Execution time: 137.163 ms
(7 rows)

• In the above we can see that the query plan is the same for the two queries despite the use of the
HAVING clause in the first. In other words, the database was smart enough to remove the plazas
which were not equal to 2 before doing the aggregation.

• In order to read these you start from the bottom and go up.

• Another one. CTE acting as optimization blocker

explain analyze with
MTALTV as (select

plaza, mtadt, hr, direction
, sum(vehiclesez) over(partition by plaza order by mtadt, hr rows between unbounded preceding and current row) as runningS

from
cls.mta)

select

*
from

MTALTV
where plaza =1 and hr = 0 and mtadt = '2010-01-01' and direction = 'I'

QUERY PLAN
--
CTE Scan on mtaltv (cost=186684.07..221655.91 rows=1 width=28) (actual time=898.385..1960.692 rows=1 loops=1)

Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01'::date) AND ((direction)::text = 'I'::text))
Rows Removed by Filter: 1165727
CTE mtaltv

-> WindowAgg (cost=160455.19..186684.07 rows=1165728 width=22) (actual time=898.361..1541.795 rows=1165728 loops=1)
-> Sort (cost=160455.19..163369.51 rows=1165728 width=18) (actual time=897.422..1058.579 rows=1165728 loops=1)

Sort Key: mta.plaza, mta.mtadt, mta.hr
Sort Method: external merge Disk: 34232kB
-> Seq Scan on mta (cost=0.00..19083.28 rows=1165728 width=18) (actual time=0.022..202.735 rows=1165728 loops=1)

Planning Time: 0.293 ms
Execution Time: 1985.602 ms
(11 rows)

193

D
RA
FT

explain analyze with
MTALTV as (select

plaza, mtadt, hr, direction
, sum(vehiclesez) over(partition by plaza

order by mtadt, hr rows
between unbounded preceding and current row) as runningS

from
cls.mta
where plaza =1 and hr = 0 and mtadt = '2010-01-01' and direction = 'I')

select

*
from

MTALTV
limit 100;

QUERY PLAN

Limit (cost=27826.27..27826.31 rows=2 width=20) (actual time=19.346..147.565 rows=2 loops=1)

CTE mtaltv
-> WindowAgg (cost=0.00..27826.27 rows=2 width=16) (actual time=19.342..147.555 rows=2 loops=1)

-> Seq Scan on mta (cost=0.00..27826.24 rows=2 width=16) (actual time=19.314..147.520 rows=2 loops=1)
Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01'::date))
Rows Removed by Filter: 1165726

-> CTE Scan on mtaltv (cost=0.00..0.04 rows=2 width=20) (actual time=19.344..147.561 rows=2 loops=1)
Planning time: 0.108 ms
Execution time: 147.609 ms
(9 rows)

explain analyze select
plaza, mtadt, hr
, sum(vehiclesez) over(partition by plaza

order by mtadt, hr rows
between unbounded preceding and current row) as runningS

from
cls.mta
where plaza =1 and hr = 0 and mtadt = '2010-01-01' limit 100 ;

QUERY PLAN

Limit (cost=0.00..27826.27 rows=2 width=16) (actual time=19.450..137.015 rows=2 loops=1)
-> WindowAgg (cost=0.00..27826.27 rows=2 width=16) (actual time=19.448..137.011 rows=2 loops=1)

-> Seq Scan on mta (cost=0.00..27826.24 rows=2 width=16) (actual time=19.435..136.992 rows=2 loops=1)
Filter: ((plaza = 1) AND (hr = 0) AND (mtadt = '2010-01-01'::date))
Rows Removed by Filter: 1165726

Planning time: 0.116 ms
Execution time: 137.065 ms

• These commands give us a ton of insight into how a query is operating.

5 Index

• So what do we do if a query is slow?

• The easy answer is usually to add an index, which is a tree structure which allows for searching for
values quickly. Specifically, the goal of an index is to decrease the number of random hard drive
accesses.

explain analyze select retdate, symb, sum(cls) over(partition by symb order by retdate asc) from stocks.s2010 limit 10;

QUERY PLAN
--
Limit (cost=81387.26..81387.46 rows=10 width=40) (actual time=14700.353..14700.428 rows=10 loops=1)

-> WindowAgg (cost=81387.26..92327.78 rows=547026 width=40) (actual time=14700.351..14700.424 rows=10 loops=1)
-> Sort (cost=81387.26..82754.82 rows=547026 width=40) (actual time=14699.988..14700.059 rows=11 loops=1)

Sort Key: symb, retdate
Sort Method: external merge Disk: 23720kB
-> Seq Scan on s2010 (cost=0.00..14293.26 rows=547026 width=40) (actual time=0.038..481.515 rows=816066 loops=1)

Planning time: 1.862 ms
Execution time: 14715.666 ms
(8 rows)

vs.

194

D
RA
FT

create index tst2 on stocks.s2010 (symb, retdate);

explain analyze select retdate, symb, sum(cls) over(partition by symb order by retdate asc) from stocks.s2010 limit 10;
QUERY PLAN

Limit (cost=0.42..1.31 rows=10 width=16) (actual time=0.388..1.308 rows=10 loops=1)
-> WindowAgg (cost=0.42..72501.81 rows=816066 width=16) (actual time=0.386..1.302 rows=10 loops=1)

-> Index Scan using tst2 on s2010 (cost=0.42..58220.66 rows=816066 width=16) (actual time=0.301..1.077 rows=11 loops=1)
Planning time: 2.509 ms
Execution time: 1.715 ms
(5 rows)

drop index stocks.tst2;

• So why not use Index’s everywhere?

• The downside of using index is that they take additional hard drive space and increase the cost of any
additional data writes or updates. Since the index has to be kept up to date with the data on disk
this means that all writes or updates to any table needs to be reflected in changes to all appropriate
indexes.

• There are many different types of indexes and these different types allow for efficiencies for different
access methods. Examples include things like B-trees which allow for fast comparison operators

6 Distributed Systems and the CAP Theorem

• In this section we will start talking about distributed systems, or multiple computer systems which
are networked together to act as a single unit.

• When dealing with these systems, each computer is generally refereed to as a “node” and the entire
system called a “cluster.”

• Distributed systems work by spreading work around different nodes. For example, if you have a
10-node cluster and send it two queries, those queries will not necessarily land on the same node each
time and thus the physical machine returning the result to you might be different.

• Many instances require distributed systems because the amount of data generated is too large to be
handled by a single computer.

• Consider the following examples:

1. Zynga (2014)

500-1000 Node Vertica cluster

60B rows/day

10 TB/day

2. Sega (2015)

8 Node Redshift cluster

20 TB

Main Table had 4B rows

110MM rows/day

Incredibly spiky data flows

3. GSN (2014)

200 Node Vertica cluster

195

D
RA
FT

Every 15 minutes 5MM rows loaded

Biggest table had 100B rows

• An important mathematical theorem governing these types of systems is called the CAP theo-
rem, which is a non-existence result. The CAP theorem states that no distributed system can be
Consistent, Available and Partition tolerant. You can only choose two of these three things. Note
that this theorem is a mathematical result and like many such results there is an ongoing discussion of
how well the mathematical definitions of these terms line-up with reality. That discussion is beyond
the scope of this class.

– Consistency: A system is consistent if all nodes within the system respond the same way to
the same query. For example, if you send a query to the first node in a cluster and it responds
with data X then that same query, if the second node responded, should also return data X.3

– Availability: A system is available if, when one node goes down, the system is still able to
respond to questions.

– Partition Tolerance: Nodes will continue to perform even if there is a disruption in commu-
nication between them.

• As an example, consider the following story of a startup that you create call 1-800-REMINDME:4

– The basic business model is that people call 1-800-REMINDME and then state their name and
something that they want to remember, such as “Jeff, I have a meeting at 8AM.”

– If you call back it will return what you said the first time and charge them 10 cents.

– Day #1: You sit down with your notebook and start writing down and responding to calls.
This works great!

– Day #2: TechCrunch and VentureBeat both publish articles about your hot new startup. You
are now swamped and when people call they are getting busy signals!

– Day #3: You add your sig-o to help, who sits in another room, on another line, with her
own notebook. Unfortunately, this doesn’t work! Sometimes people call and get your sig-o,
sometimes they call and get you, but either way, some messages end up in their notebook and
some in yours:

Jeff: When is my meeting?
sig-o: You don't have a meeting.
Jeff: Wow. You suck.

– This system is not consistent, as, depending on what node you contact you get different
responses.

– Day #4: New plan! In order to make the system consistent you do the following: before
making any create or update operation confirm it with the other person:

Jeff to sig-o: My class is at 8AM
sig-o to you: Jeff, class at 8AM
you to sig-o: Jeff, class at 8AM confirmed.
sig-o to Jeff: confirmed.

3Note that this is a different type of consistency then the type of consistency we spoke of when talking about transactions
and ACID.

4This was taken from http://ksat.me/a-plain-english-introduction-to-cap-theorem/

196

http://ksat.me/a-plain-english-introduction-to-cap-theorem/

D
RA
FT

– This slows down the system on writes, but reads are very quick and consistent since both you
and your sig-o’s notebook are the same.

– Day #5: Oh, no, sig-o get sick and sometimes run out of the room to throw-up! What happens
then...

Jeff to you: My meeting is at 9AM.
you to sig-o: Jeff, meeting at 9AM.
sig-o:
Jeff hangs up after 5 minutes

– This system is not available, when one node goes down the entire system fails.

– Day #6: New idea: If the other person is not reachable then write down all writes and send via
email to the other person. The other person does not start answering the phone after coming
back before checking their email for a list of all changes and verifying that all those writes are
in their system.

– This system is now consistent and available!

– Day #7: Your sig-o is pretty sick of this business and just stops talking to you, or sending
emails or responding at all. Once again you are stuck, because you don’t get an email from
them you don’t know what changes happened. Because you can’t confirm any transactions you
can’t do any updates or add new clients to your notebook.

– This system is not partition tolerant. If there is no communication between the nodes then
the system once again fails. Even though there is perfectly good information for many of 1-
800-REMINDME in your notebook, you can’t use it because the system that you have in place
requires verification from the non-responsive sig-o.

• The CAP theorem states that you can only really choose 2 of the 3 CAP elements.

• Different applications will require different attributes. For example, bank account information will
always want consistency – account balances should always report the same number.

• Note that there are also minor definitional changes in each of these. For example, many systems
have what is called eventual consistency. Redshift, one of Amazon’s offerings, promises consistency
within 60 seconds.

197

D
RA
FT

198

D
RA
FT

Chapter 12

Extensions [TBD]

199

D
RA
FT

Contents

1 More Advanced Joins . 204

2 OLAP: Cube and Rollup . 210

3 Schemas . 210

4 Keys . 210

5 Data Exploration Strategies . 210

6 Query Strategies . 210

200

D
RA
FT

• When we model the LTV of a customer, we usually only consider factors that we can attribute to
them at the start of their first session and not factors that occur sometime after their initial start.
Why do we do this? Because the numbers that are generated not at the start of a session are hard to
compare against. For example, if you take the “LTV of customers who have spent more than than 20
minutes on our website” it is difficult to understand what to compare this to or even what it means.

• The average revenue per customer number that we came up with before is generally not considered
to be the LTV. The LTV is usually a cohort measure – it has a time component to it. In the above
queries we are comparing users who have spent a short amount of time in the system to those who
have spent a lot of time in the system.

• Because LTV is a cohort number, we need to measure the LTV based on the number of users within
a time period, such as week or month. For example, lets consider the case where we want to compute
LTV based on month of first purchase.

select
, lhs.cohort
, sum(amt) as totaldol
, count(distinct lhs.userid) as numusers
, sum(amt)/count(distinct lhs.userid) as numusers

from
(select

userid, date_trunc('month', min(dt))::date as cohort
from

trans
group by 1) as lhs

left join
trans

using(userid)
group by 1

• The query above only returns the total revenue by cohort. We may want to return the running total,
by month. In other words, we want to make a table where the Y-axis is the cohort and the X-axis is
the number of months, starting at zero, and the amount of money that was generated by that cohort
that many months afterward. Let’s consider the first three months of LTV.

Before starting this, make a chart of what the data should look like:

cohortdt numusers mon 0 amt mon 1 amt mon 2 amt

01-01-2011 1,155 25,764 12,885 9,995
02-01-2011 355 7,555 3,456 1,111
03-01-2011 755 2,888 7,925 1,100

201

D
RA
FT

select
lhs.cohort
, count(distinct lhs.user_id) as numusers
, sum(case when trans.dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end) as mon_0_amt

, sum(case when trans.dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end) as mon_1_amt

, sum(case when trans.dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end) as mon_2_amt

from
(select

userid, date_trunc('month', min(dt))::date as cohort
from

trans
group by 1) as lhs

left join
trans

using(userid)
group by 1

• Calculate the average revenue per user in the cohort for the first three months of LTV.

select
lhs.cohort
, sum(case when trans.dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_0_PU

, sum(case when trans.dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_1_PU

, sum(case when trans.dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_2_PU

from
(select

userid, date_trunc('month', min(dt))::date as cohort
from

trans
group by 1) as lhs

left join
trans

using(userid)
group by 1

• Calculate the average revenue per active-user from that cohort for the first two months of LTV:

202

D
RA
FT

select
lhs.cohort
, sum(case when trans.dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end)

/ count(distinct case when trans.dt::date
between cohort and (cohort + '1 month'::interval)::date
then lhs.userid else null end) as mon_0_PU

, sum(case when trans.dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end)

/ count(distinct case when trans.dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then lhs.userid else null end) as mon_1_PU

, sum(case when trans.dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end)

/ count(distinct case when trans.dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then lhs.userid else null end) as mon_2_PU

from
(select

userid, date_trunc('month', min(dt))::date as cohort
from

trans
group by 1) as lhs

left join
trans

using(userid)
group by 1

• Calculate the LTV for the first three months, per-cohort, for both first-purchase subscribers and
first-purchase non-subscribers.

203

D
RA
FT

select
date_part('month', firstdt) as cohort
, subscriber_flag
, sum(case when trans.dt::date

between cohort and (cohort + '1 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_0_PU

, sum(case when trans.dt::date
between (cohort + '1 month'::interval)::date

and (cohort + '2 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_1_PU

, sum(case when trans.dt::date
between (cohort + '2 month'::interval)::date

and (cohort + '3 month'::interval)::date
then amt else 0 end) / count(distinct lhs.user_id) as mon_2_PU

FROM
(select

lhs.userid
, max(case when trans.transtype = 'S' then 1

else 0 end) as subscriber_flag
, max(firstdt) as firstdt

from
(select

userid, min(dt) as firstdt
from

trans
group by 1) as lhs

left join
trans

on
lhs.userid = trans.userid
and lhs.firstdt = trans.dt

group by 1) as lhs

LEFT JOIN
trans

using(userid)
group by 1,2
order by 2,1;

1 More Advanced Joins

In this section we are going to cover a number of common advanced joins.

• In this section we are going to cover some advanced join syntax.

204

D
RA
FT

pct | hr | plaza
--------------------+----+-------
0.0137942721572615 | 0 | 1

0.00820199966107439 | 1 | 1
0.00871038806981867 | 2 | 1
0.0100321979325538 | 3 | 1
0.0189798339264531 | 4 | 1
0.050160989662769 | 5 | 1
0.0880528723945094 | 6 | 1
0.0690730384680563 | 7 | 1
0.0707676664972039 | 8 | 1
0.0570411794611083 | 9 | 1
0.0679545839688188 | 10 | 1
0.0647347907134384 | 11 | 1
0.0596509066259956 | 12 | 1
0.0620233858668022 | 13 | 1
0.0705643111337061 | 14 | 1
0.0771733604473818 | 15 | 1
0.0696153194373835 | 16 | 1
0.0667005592272496 | 17 | 1
0.0617183528215557 | 18 | 1
0.0575834604304355 | 19 | 1
0.0412133536688697 | 20 | 1
0.0297576681918319 | 21 | 1
0.0268090154211151 | 22 | 1
0.023351974241654 | 23 | 1

(24 rows)

We join on plaza and then order by hr and this returns the percentage for each hour of the total.

• If we want to do same thing for multiple plazas and multiple days, we can modify the query by
removing things from the WHERE clause and adding things to the JOIN:

205

D
RA
FT

select
vehiclesez::float / totalez as pct
, hr
, lhs.plaza

from
(select

vehiclesez
, mtadt, plaza, hr

from
cls.mta

where
direction = 'O') as lhs

LEFT JOIN
(select

sum(vehiclesez) as totalez
, mtadt, plaza

from
cls.mta

where
direction = 'O'

group by 2,3) as rhs
using(plaza, mtadt)
order by hr asc;

Which should work, but it doesn’t because of a division by zero error. How do we handle this? In
this case we are going to treat them as NULL:

206

D
RA
FT

select
case

when totalez = 0 then null
else vehiclesez::float / totalez
end as pct

, hr
, lhs.plaza

from
(select

vehiclesez
, mtadt, plaza, hr

from
cls.mta

where
direction = 'O') as lhs

LEFT JOIN
(select

sum(vehiclesez) as totalez
, mtadt, plaza

from
cls.mta

where
direction = 'O'

group by 2,3) as rhs
using(plaza, mtadt)
order by plaza, hr;

• Let’s create a running average for the last two hours (3 data points) of inbound traffic using the
EZ-pass for each plaza.

207

D
RA
FT

select
lhs.hr, lhs.mtadt, lhs.plaza, lhs.vehiclesez
, sum(rhs.vehiclesez)::float/count(rhs.vehiclesez) as running

from
(select

vehiclesez, hr, mtadt, plaza
from cls.mta

where direction = 'I') as lhs
left join

(select
vehiclesez, hr, mtadt, plaza

from cls.mta
where direction = 'I') as rhs

on
lhs.plaza = rhs.plaza
and (

(lhs.hr >= 2
and lhs.mtadt = rhs.mtadt
and rhs.hr >= lhs.hr - 2
and rhs.hr <= lhs.hr)

OR
(lhs.hr = 1

and (
(lhs.mtadt = rhs.mtadt and rhs.hr <= 1)
or (lhs.mtadt -1 = rhs.mtadt and rhs.hr = 23))

)
OR
(lhs.hr = 0

and (
(lhs.mtadt -1 = rhs.mtadt and rhs.hr in (22, 23))
or (lhs.mtadt = rhs.mtadt and rhs.hr=0)
)

)
)

group by 1,2,3,4;

• Keep in mind that the hour goes from 0-23, there is no hour 24 in the dataset. The above query
works by matching all rows that fulfill one of three criteria.

1. If the hour ≥ 2 then just match based on the same date and the right hand side hour is in the
previous two hours.

2. If the hour is equal to 1 then match either the zero or 1 hour with the same date or the 23 hour
from yesterday.

3. If the hour is equal to 0 then match either the hour zero on the same day or hour 22 or 23 from
yesterday.

Once the match is completed the dataset will be three times as large as expected since each row in
the left hand table matches three in the right hand table. In order to create the average we then use
the GROUP BY to collapse those three rows into one, as defined by the left hand table.

• We can also rewrite the query to leverage the contents – and in particular the time aspect of the
information. But to do so we will need to convert our hour and time information into a timestamp.
There are a number of ways to construct a timestamp, what we will do is combine the date and time
using string concatenation and then convert it via the double-colon operator. The following query
successfully demonstrates how this would occur:

208

D
RA
FT

select ('2015-10-04' || ' ' || 2::varchar || ':00')::timestamp ;
timestamp

2015-10-04 02:00:00
(1 row)

• To do the time comparison we will use an INTERVAL operator to assist in the time comparison, as
can be seen in the final query below.

select
lhs.mtatime, lhs.plaza, lhs.vehiclesez
, sum(rhs.vehiclesez)::float/count(rhs.vehiclesez) as running

from
(select

(mtadt || ' ' || hr::varchar || ':00')::timestamp as mtatime
, plaza, vehiclesez

from
cls.mta where direction = 'I' and plaza = 1) as lhs

left join
(select

(mtadt || ' ' || hr::varchar || ':00')::timestamp as mtatime
, plaza, vehiclesez

from cls.mta where direction = 'I' and plaza = 1) as rhs
on

lhs.plaza = rhs.plaza
and rhs.mtatime >= lhs.mtatime - interval '2 hour'
and rhs.mtatime <= lhs.mtatime

group by 1,2,3
order by 1;

As in the previous version of this query, we first expand the dataset threefold using the time matching.
The data is then collapsed back down into its original form.

• One number we want to calculate is the average revenue per user (ARPU) for a -AAS company. In
these situations, customer transaction data is provided in a “long” format with each row representing
a single sale.

• Calculating the ARPU is often the first step in calculating a user’s lifetime value (or long-term value)
(“LTV”). For companies providing a service over time, the calculation of LTV is critical for ensuring
profitability. Studying the per-unit economics of a product are often the domain of the data science
team and the exercise undertaken below is a common exercise.

• Our major goal for this module is to create a cohort based estimate of how much revenue is generated
by an average customer over time. In particular, companies often focus on understanding things
like the 90-day ARPU or 120-day ARPU, which represents how much money an average customer
generates over the first 90 and 120 days of a customer’s lifetime.

• We call this a “cohort” based estimate because we group users based we create this estimate based
on when a user first enters the system or alternatively, first becomes a customer. This is usually done
on a monthly or weekly basis. So we often consider all new customers who

209

D
RA
FT

2 OLAP: Cube and Rollup

TBD

3 Schemas

TBD

Star and Snowflakes

Facts and Dimensions

4 Keys

TBD

5 Data Exploration Strategies

TBD

Goal is to look at data and try to piece how it goes together. Start with just a list of tables and go through
“how do we explore this data?”

1. Look at the data (top-10 for each)

2. Think about how it might go together (draw a schema diagram)

3. What do we expect to be unique?

4. How do we test to see if it is unique?

5. What are some one-off things that we can do?

6 Query Strategies

Query strategies: Add a section “Query Strategy” to each lecture which covers some of the more descriptive
aspects covered in class.

• Write out what you want.

• Write out conditions for getting it and where data is.

• Build from the inside out.

• For aggregation queries, explain what they doing and dig hard into the data shape.

210

D
RA
FT

Chapter 13

Interview Hints

211

D
RA
FT

1 Interview Hints

In this section we will go over some advice for preparing for SQL interview questions. The end of this
chapter contains a number of real interview questions that candidates have gotten when interviewing over
the last few years.

One quick note before jumping into the below. Most of my experience and the experience of students that I
speak with is industry focused and specifically “tech” jobs. If you are looking at a position in government,
non-profit, or even non-tech fields, the information below may not be as applicable. YMMV.

The three most common ways that SQL is assessed during an interview are:

1. Recruiter oral assessment

2. Whiteboard style assessment

3. Automated Assessment

Before doing interview prep in earnest it is important to think about each interview assessment mechanism
and how to best prepare for it.

In the first case, a recruiter asking a few SQL questions, the purpose is to filter out people who are bluffing
their knowledge. In these cases, the interviewer will ask a question or two based off a simple table that
they describe. The person being interviewed is expected to respond with something “that sounds about
right”. The recruiter (generally) isn’t writing your code down, they are listening to what you say and
comparing it to the solutions that have been given to them.

A whiteboard style assessment is a human evaluated interview style where the interviewer provides the
person being interviewed with a series of questions and usually a description of some data structure. While
the specifics of this can change a bit the key feature is that you are expected to know the topic before
showing up to the interview. Generally speaking some type googling is allowed, but outside of minor syntax
(e.g. remembering the order of arguments) it is generally frowned upon. Pre-covid these were all done
“on a whiteboard” in an office, but post-covid many of these interviews take place over zoom. Instead of
a physical whiteboard, the candidate is expected to share their screen and talk through the problem. You
are generally expected to ask questions about the data.

The final common interview tool is an online automated assessment, such as those found on leetcode or
hackerrank, though there are a variety of these platforms. In this style of assessment you are provided a
prompt (and usually a timer) and sometimes some type of recording / browser lock which prevents you
from accessing the internet. You then enter your answers into the online test and submit. Depending on
the parameters you may get multiple chances to submit different answers, but most of the time you do not
see the response.

So, given the above, how do you prepare?

Recruiter oral assessment

These interviews are easy, the goal is to speak with confidence and get “roughly” the correct answer. The
failure mode on this first type of interview is demonstrating a lack of conviction about your knowledge.
This is less about what you know and more about knowing a little bit and being convincing.

Whiteboard Interviews

The basic idea is to do lots and lots of problems. In a whiteboard interview you are assessed based on your
knowledge, speed and expertise. Having the information at your finger tips is the best way to succeed in
these situations. On that note, you’ll find some helpful hints on how to review below.

212

D
RA
FT

To prepare for this type of interview you need to stop writing queries at your computer and start writing
queries on paper. This bears repeating: To prepare for whiteboard SQL questions you need to stop writing
queries on your computer, it is a crutch that you will not have during an interview.

I recommend printing out the homework assignments, especially the first few, and answering them on pen
and paper. This will train you to stop relying on assistance from the computer (no more auto-complete or
syntax highlighting) and focus your energy on what you do not know full understand. In the next section
I describe a few “levels” of difficulty that candidates frequently encounter.

Automated Assessment

Automated candidate assessment mechanisms are becoming more and more common in technology related
fields. As an interviewer, I (personally) find them to be higher variance than traditional whiteboard
interviews. However, in situations where the number of candidates for a position is incredibly high relative
to the team size I have been tempted to use these.

That being said, if I were a candidate and faced one of these I would do my best, but accept that it isn’t
a reflection

213

D
RA
FT

There are a few ways that SQL interviews are completed. Even pre-pandemic most SQL interviews were
done either over the phone (very simple questions), over a video call or via automated systems (like hacker
rank or leetcode). There were some traditional white board interviews with SQL, but that was relatively
uncommon. Before jumping into the interviews it is very, very important to keep in mind that SQL, while
a “standard” is loose and interviewers will often restrict the available features that are available to the
person being interviewed. For example, depending on what options are chosen in the automated system,
CTEs and analytics functions may not be available.

In Figure 13.1 you can see an example of a former student who got lucky – CTEs were not allowed in their
interview but they were allowed through to the next round. In a bit of foreshadowing, the next round of
their interview process ended up doing some whiteboard SQL work and they were cut at that stage.

Figure 13.1: Conversation with Student

• Simple WHERE: Most questions like this include presenting a table and asking for a query which
selects a subset of rows and columns. For example, using the stocks2016 data: write a query which
returns all the rows where the volume traded is greater than 10,000. Most of the time, interviewers
will not ask specific questions about functions (such as date functions), they are only looking to see
if you can write a basic query.

To prepare for this level of questions:

– Review the WHERE clause and make sure that you are comfortable answering questions from
homework #1. Make sure that you are comfortable writing queries which use SELECT, FROM
and WHERE.

– Focus on making sure you understand basic syntax and how to combine multiple conditions
within a WHERE statement using AND and OR.

214

D
RA
FT

– Make sure you understand ORDER BY for sorting data.

• Aggregations: Questions like this include computing the MAX, MIN, SUM, AVG and COUNT. For
example: Count how many rows in stocks2016.d2010 have volume more than 10,000. The purpose
of these questions are to make sure that you understand how to collapse data using a GROUP BY.
They may also be testing that you understand that WHERE is evaluated before the GROUP BY.

To prepare for this level of questions:

– Review homework #2. Focus on the syntax and making sure you understand how WHERE and
GROUP BY are applied.

– Understand how to name columns.

• Complex aggregations with sub queries: Questions like this include using aggregations on a
single table, but multiple times. For example, how many stocks in 2010 have an average price over
$50. To complete this you will need to compute the average price for all stocks and then exclude
those with an average less than $50 and then count those remaining stocks.

To prepare for this level of questions:

– Review homework #3.

– Focus on naming and how multiple queries fit together.

• Joins: Usually this involves either a LEFT or INNER join. The interviewer is trying to test to see
if you know the join syntax.

To prepare for this level of questions:

– Review Homework #4 as well as read Lesson #4 and make sure you understand the examples
in that chapter.

– One common question asked when doing SQL interviews is to provide an interview with different
datasets and ask how using LEFT, RIGHT, INNER or OUTER command will effect a join.

– I have never heard of an interview that used a CROSS JOIN.

• More advanced syntax: The most complex queries I have seen in interviews ask questions about
NULL, HAVING or require the use of a CASE statement. In particular, questions like “how to make
this long dataset wide” or, “when we sort, do NULL values come first or last?”

To prepare for this level of questions:

– Review the more advanced questions in each homework assignment.

– Spend time on the practice exams.

Two final points when doing SQL interviews:

First, when doing an interview, make sure that you understand the data before starting to write the query.
Ask questions about what columns are unique, which ones have duplicates and what different data types
are in each column (if you do not know or they are not obvious). The most common failure, aside from
not knowing any SQL, is making an assumption about the data that is incorrect.

Secondly, be careful when writing the query. Write it nicely on the board/keyboard, use space on the
board to make the query easy to read. Do not write this:

select count(1) as numsales , name from transaction left join salesperson
using(sid) group by name order by 1 desc limit 5;

215

D
RA
FT

Write this instead:

select
count(1) as numsales
, name

from
transaction

left join
salesperson

using(sid)
group by name
order by 1 desc
limit 5;

2 Example Interview #1

The following questions were given to a student for an interview for a full-time data focused role at
Facebook.1 This was part of the initial screening and was done on a video call with screen sharing set
up. The student was required to open a text editor on their screen, which the interviewer could see. The
interview then provided the student with information and a set of queries they were required to answer.
All of the above information was provided to the person being interviewed.

Note that there were some fairly straightforward warm-up questions (e.g. write a query which returns all
rows and columns about a particular user), but those were not recorded below.

The information in the table is about a Facebook product called Community Translator which allows
people to provide translations or vote on translations. The table is a log of actions that are taken by users
and has the following form:

Name Type Examples

date STRING format - 2019-03-31
user id BIGINT format - 81238123
language STRING Arabic, Spanish, Swahili, etc.
device STRING 2 possible values - desktop OR mobile
action STRING 2 possible values - vote OR translate

Questions

1. What were the top 10 languages yesterday, in terms of number of unique users who were translators?

2. Return a table with the number of translations completed per language.

3. How many users submitted more than one action yesterday?

4. How many users voted yesterday but didn’t translate yesterday?

Answers

1. What were the top 10 languages yesterday, in terms of number of unique users who were translators?

1While this exact student was interviewing for a data analyst level position, multiple people have coorobated that this is
done for data science roles.

216

D
RA
FT

select
language

from
table

where action = 'Translate'
order by count(distinct user_id) desc
limit 10;

2. Return a table with the number of translations completed per language.

select
language, count(1) as ct

from
table

where action = 'Translate'
group by 1;

3. How many users submitted more than one action yesterday?

select count(1) as ct
from
(select

user_id
from table
where date = date(now()) - 1
group by 1
having count(distinct action) > 1) as innerQ

4. How many users voted yesterday but didn’t translate yesterday?

select
count(distinct user_id)

from table
where

user_id NOT in
(select distinct userid from table

where date = date(now()) - 1 and action ='Translate')
and action = 'Vote' and date = date(now()) - 1;

Or using a join:

select count(1) as ct
from
(select distinct user_ID from table

where date = date(now()) - 1 and actions = 'Vote') as lhs
left join
(select distinct user_ID from table

where date = date(now()) - 1 and actions = 'Translate') as rhs
on lhs.user_ID = rhs.user_iD
where rhs.user_ID is null;

217

D
RA
FT

Or using a CASE statement:

select
count(1) as ct

from
(select

user_id
, max(case when actions = 'Vote' then 1 else 0 end) as m1
, max(case when actions = 'Translate' then 1 else 0 end) as m2

from
table

where date = date(now()) -1
group by 1) as innerQ

where m1 = 1 and m2 = 0;

3 Example Interview #2

In this whiteboard interview, the interviewee was given the following information on two tables:

• orders table: Contains information on orders and had three columns (order id (int), vendor id (int)
and order value (float))

• returns table: Contains information on returns and had three columns (return id (int), order id
(int) and return reason (string))

Both order id and return id were integer ids that incremented on their respective tables. Not all orders
had returns.

Questions

1. Top 5 vendors (vendor id) in terms of the largest order.

2. Return rate (number of returns divided by number of orders) for each vendor. Make sure to return
zero as the rate if the vendor has no returns.

3. For each vendor return the most common return reason.

Answers

1. Top 5 vendors in terms of the largest order.

select
vendor_id

from
orders

group by 1
order by max(order_value) desc
limit 1;

2. Return rate (number of returns divided by number of orders) for each vendor. Make sure to return
zero as the rate if the vendor has no returns.

218

D
RA
FT

select
vendor_id
, count(return_id)::float / count(orders.order_id) as return_rate

from
orders

left join
returns

on orders.order_id = returns.order_id
group by 1;

3. For each vendor return the most common return reason.

(a) Using Analytic Functions

select
vendor_id, return_reason

from
(select *

, max(reason_ct) over(partition by vendor_id
order by reason_ct desc
rows between unbounded preceding

and unbounded following) as mxct
from

(select
return_reason
, vendor_id
, count(1) as reason_ct

from returns group by 1,2) as iq
) as iq2

where maxct = reason_ct;

(b) Using CTE

with
total_return_count as

(select return_reason, vendor_id, count(1) as reason_ct
from returns group by 1,2)

select
lhs.vendor_id, rhs.return_reason

from
(select max(reason_ct) as maxct, vendor_id

from total_return_count group by 2) as lhs
join

total_return_count as rhs
where lhs.vendor_id = rhs.vendor_id and lhs.maxct = rhs.reason_ct;

(c) No Analytic Functions, no CTEs:

219

D
RA
FT

select lhs.return_reason, lhs.vendor_id
from

(select return_reason, vendor_id, count(1) as reason_ct
from returns group by 1,2) as lhs

join
(select vendor_id, max(reason_ct) as maxct

from
(select return_reason, vendor_id, count(1) as reason_ct

from returns group by 1,2) as innerRHS
group by 1) as RHS

on lhs.vendor_id = rhs.vendor_id and lhs.reason_ct = maxct

4 Example Interview #3

This set of questions was given during 2019. Note that these require some knowledge of date functions.
There are two tables, each with two columns. Columns with the same name can be assumed to match.
Note that it is possible for a person to convert without appearing in the visit table.

• Conversion Table: Information on users converting (paying) on a website.

– User id: The ID of the user (integer).

– Converstion ts: The timestamp (date and time) of when the conversion occurred.

• Visit Table: Information about users visiting an advertising web site.

– User id: The ID of the user (integer).

– vist ts: The timestamp (date and time) of when the user visited the site.

1. How many visits did each user have to the website?

select user_id, count(1) as num_visits
from
visit
group by 1;

2. What were the top-5 users in terms of visits?

select user_id
from
visit
group by user_id
order by count(1) desc
limit 5;

3. Return a list of users who visited the site today, yesterday and the day before yesterday.

220

D
RA
FT

select distinct v1.user_id
from
(select distinct user_id from visit where date(visit_ts) = date(now())) as v1
join
(select distinct user_id from visit where date(visit_ts) = date(now()) - 1) as v2
on v1.user_id = v2.user_id
join
(select distinct user_id from visit where date(visit_ts) = date(now()) - 2) as v3
on v1.user_id = v3.user_id;

4. List the three most recent visit timestamps which occurred before the conversion timestamp. If no
visit occurred then return one row with a null timestamp. You can also assume that a user id has,
at most, a single conversion.

There are a few different ways to answer this question, the first is the most general and relies only
upon standard SQL syntax. The basic logic is to first exclude all visits which are after the conversion
and then join the visit table on itself counting the number of rows after aggregating down on one
side. If the number is less than or equal to 3, you know that the number of visits is within 3.

select
lhs.user_id, lhs.conversion_ts, rhs1.visit_ts

from
conversion as lhs

left join
visit as rhs1

on lhs.user_id = rhs1.user_id
and rhs1.visit_ts <= lhs.conversion_ts

left join
visit as rhs2

on lhs.user_id = rhs2.user_id
and rhs2.visit_ts <= lhs.conversion_ts
and rhs1.conversion_ts <= rhs2.conversion_ts

group by 1,2,3
having count(1) <= 3;

5 Example Interview #4

This interview was given in 2023 to a student in UChicago’s MACSS program. The interview was conducted
with the student sharing their screen. Two tables were described in the interview with the column “SID”
connecting them.

• salespeople contains information on sales people at a company

– SID

– name

• sales contains information on sales that were made by each sales person. Note that SID is not unique
as a sales person can have multiple sales.

– SID

– sales amt

221

D
RA
FT

1. Tell me the total amount of sales generated by each sales person (name).

select name, sum(sales_amt) as total_sold
from
salespeople left join sales using(SID)
group by 1;

2. Tell me the names of salespeople who did not have any sales.

Two options. Depending on the size of the table there could be significant performance differences.

select lhs.side
from
select sid from salespeople as lhs
left join
(select distinct sid from sales) as rhs
on lhs.sid = rhs.sid
where rhs.sid is null;

select sid from salespeople where
sid not in (select distinct sid from sales)

222

D
RA
FT

Chapter 14

Introduction

223

D
RA
FT

Contents

1 What is Pandas . 225

2 Data structures . 226

3 Selecting Columns and Rows . 231

4 Column Types Conversion . 237

5 Dealing with NaN . 237

6 Choosing the largest and smallest values . 239

7 Manipulating Data & Method Chaining . 240

8 Indexes: Creating and Dropping . 244

9 Views and Copies . 246

224

D
RA
FT

1 What is Pandas

• Pandas is a Python library for manipulating data developed by Wes McKinney.

• Pandas itself is a front-end API for manipulating data that is stored in-memory. This type of tool is
often called an in-memory database and, when appropriate, this type of database is the far superior
than the relational databases that we have been talking about previously.

• The limitation of this type of database is that the data needs to be small enough to fit into your
computer’s RAM. For modern data analysis this is a major limitation as many data sets are far larger
than the present memory.

• The pandas documentation provides a nice summary of this:1

Figure 14.1: Pandas limitations

• Mentally, pandas consists of a front-end API and a backend in-memory data structure. Before version
2.0 the only backend that was in use was numpy. Specifically complex pandas data structures were
built upon numpy based objects.2

• The (still default) backend required significant memory use to store data. Per Wes McKinney, pandas
rule of thumb: have 5 to 10 times as much RAM as the size of your dataset, which is a pretty rough
standard to hew to.

• The latest release of pandas, version 2.0, which will be released in March, 2023 creates a more
significant abstraction between the back- and front-end API and allows for the use of Apache Arrow
as a backend storage structure in place of numpy.

• Apache Arrow is a columnar in-memory data structure which is optimized for vectorization via SIMD
(single instruction, multiple data) routines. By using the Apache Arrow backend, rather than numpy,
the ratio to dataset size to memory size is much more manageable.

• The Apache Arrow API is very similar to numpy, but has a number of additional types and also has
better support for missing values across types.

1Taken from https://pandas.pydata.org/docs/user_guide/scale.html
2Wes McKinney’s blog has a bunch of information about the decision making at the time, you can find it here: https:

//wesmckinney.com/blog/apache-arrow-pandas-internals/

225

https://pandas.pydata.org/docs/user_guide/scale.html
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/

D
RA
FT

• Pandas is both powerful and useful, especially when doing data analysis. However it comes with
some significant downsides:

1. Pandas is more imperative than SQL which means you tell the interpreter what to do, step-by-
step. For data operations there are often many ways to undertake the same operation which
means that two people can write two very different Pandas expressions and generate the same
results.

2. Pandas is not persistent. It stores data in memory and, if the computer crashes, you lose it.

3. Pandas is only efficient when the size of data is small enough to “fit” into memory.

4. Pandas is not easily scalable across multiple computers.

• Since, at the time of the start of this course, version 2.0 has NOT been released, we
will still be leveraging version 1.5 in the course of this class.

• To begin we import the Pandas and NumPy packages. By convention, we usually do it as follows:

>>> import numpy as np

>>> import pandas as pd

• So, when should you use Pandas? You should use it when you have data that easily fits into your
computer’s memory and you wish to explore or perform straightforward analysis on that data.

2 Data structures

• Starting from the bottom there are a number of data types. The chart below shows how they line up
with underlying Python and Numpy types.

Description Pandas Type Numpy Type Python (built-in)

Integers int64 int8, int16, int32, int64, etc. int
Text object string, unicode str
Double/Float float64 float16, float32, float64 float
Boolean (T/F) bool bool bool
DateTime datetime64 datetime64 N/A

Table 14.1: Common Data Types

• The types above are how the underlying data is stored, what operations are allowed on it and how
those operations act. For example a “+” will do string concatenation when paired with two objects,
but will undertake mathematical addition when paired with floats and integers.

• In Pandas these underlying data types are what we put together to build the two basic data structures
that we find in Pandas: DataFrames and Series.

• To determine the type of a particular python object we use the type command:

>>> type([1,2,3])

which will return list or <class 'list'>.

• The type function works on both underlying data types as well as the larger data structures.

226

D
RA
FT

• An important thing to remember: Pandas is a bit inconsistent in its design and it is frequently
the case that a function, operation or something you do will inadvertently change your data. When-
ever diagnosing an issue in Pandas, make sure to check the type. You’ll often be surprised about
what you are working with.

• The way to think about both a Series and a DataFrame is that they are two objects (index and
values), combined. The value component contains the actual data while the index component is its
own object which has operations that are allowed on it. Note that index objects are complex and
can exist in both rows and columns. We will touch upon this a bit later.

Series

• A Series is one dimensional data object with an associated index.

• There are a number of different way to create a list. For example, consider the following two com-
mands which initialize two variables (“x 1” and “x 2”) which contain the same values.

• The “name” input defines what the column name is while the list at the start are the values. In the
second example, we also have an official “index” which creates labels for the rows of the data.

>>> x_1 = pd.Series([1,2,3,4], name="v1")

>>> x_2 = pd.Series([1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

• Printing the values yields the following:

>>> x_1
0 1
1 2
2 3
3 4
Name: v1, dtype: int64

>>> x_2
a 1
b 2
c 3
d 4
Name: v1, dtype: int64

• Note that x_1 has an index starting from zero and ending at 3 while the second has an index of a,
b, c, d.

• We can access the values and index of a series using the following attributes:

>>> x_2.values
[1 2 3 4]

>>> type(x_2.values)
<class 'numpy.ndarray'>

The returned object is an array, not a series! When we ask for the index, we return an “Index”
object, which is a type of Pandas data structure that is similar to a data frame.

227

D
RA
FT

>>> x_1.index
RangeIndex(start=0, stop=4, step=1)

>>> x_2.index
Index(['a', 'b', 'c', 'd'], dtype='object')

• To get the size of a Series we can use the “size” or “shape” attributes. Shape is used more frequently
as it will return the shape in the case of multidimensional objects (size only returns the number of
objects).

>>> x_2.size
4

>>> x_2.shape
(4,)

The “shape” command returns a tuple.

• Not only can the series have a name (such as “v1” in our above examples), but the index can also
have a name. This is not something frequently encountered.

>>> x_2.name

>>> x_2.index.name = 'alpha'

>>> print(x_2)
alpha
a 1
b 2
c 3
d 4
Name: v1, dtype: int64

• Math can be done between Pandas objects:

>>> x_1 + x_1
0 2
1 4
2 6
3 8
Name: v1, dtype: int64

>>> x_2 + x_2
alpha
a 2
b 4
c 6
d 8
Name: v1, dtype: int64

228

D
RA
FT

• Indexes are incredibly important because they strongly effect how operators work. In particular,
indexes in Pandas align data and when series are added together real effects occur. For example,
consider the following:

>>> ans = x_1 + x_2
v1

nan
nan
nan
nan
nan
[...]

If we look at what is returned it is another Pandas Series, with a single column which has the name
“v1” and eight values, all of them NaN.3 Why did this occur? Two reasons:

1. Since the indexes didn’t align, the addition operator assumed that the rows did not align and
thus the resulting dataset had 8 rows (4 + 4).

2. When adding objects in Pandas, anything added to NaN is equal to NaN.

• If we only want to display the first few data points in a series, we can use the “head” method which
can be used as follows:

>>> x_2.head(2)
alpha
a 1
b 2
Name: v1, dtype: int64

There is also a “tail” method which returns the last rows:

>>> x_2.tail(2)
alpha
c 3
d 4
Name: v1, dtype: int64

If no integer argument is provided the above methods return 5 values.

• If we want to find out information about what data types are in the series we can use the the dtypes
variable associated with the object:

>>> x_2.dtypes
int64

DataFrame

In this section we are going to use the Iowa Cars data (as in the previous SQL section). To use this data,
we load the information in a DataFrame, as the command below does:

3Interestingly, NaA is from the numpy library, so can be called as “nupy.NaN”

229

D
RA
FT

>>> dfCars = pd.read_csv('<FILEPATH>/iowa_cars.tdf'
,sep='\t', engine='python', names=['year', 'countyname'

, 'motorvehicle' ,'vehiclecat', 'vehicletype'
, 'tonnage', 'registrations', 'annualfee'
, 'completecategory'])

Note that <FILEPATH> needs to be set to your local copy of file.

• A DataFrame is two dimensional data object (think of a table) and an associated index.

• head, tail, shape, size, index and dtypes are all available and behave as you’d expect:

>>> dfCars.head()
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2008 Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [...]

>>> dfCars.shape
(41202, 9)

>>> dfCars.size
370818

>>> dfCars.dtypes
year int64
countyname object
motorvehicle object
vehiclecat object
vehicletype object
tonnage object
registrations int64
annualfee float64
completecategory object
dtype: object

>>> dfCars.index
RangeIndex(start=0, stop=41202, step=1)

• Outside of dtypes, which describes the type of data in each column, the method describe()
creates a set of summary statistics for all columns:

>>> dfCars.describe()
year registrations annualfee

count 41202.000000 41202.000000 3.825800e+04
mean 2013.724504 1767.522135 2.122614e+05
std 4.697944 7417.077934 1.181381e+06
min 2005.000000 1.000000 0.000000e+00
25% 2010.000000 25.000000 3.020000e+03
50% 2014.000000 183.000000 2.464500e+04
75% 2018.000000 989.750000 9.136975e+04
max 2021.000000 218975.000000 4.964507e+07

• Note that addition with DataFrames and Series can behave unexpectedly. Consider the following

230

D
RA
FT

examples:

>>> x_2 = pd.Series([1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

>>> x_3 = pd.Series([1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v2")

>>> d_2 = x_2.to_frame()

>>> d_3 = x_3.to_frame()

We now have two series (x_2 and x_3) which are the same except for the name (“v1” vs. “v2”) and
we have two DataFrames based off of those series. Let’s do some math:

>>> x_2 + x_3
a 2
b 4
c 6
d 8
dtype: int64

>>> d_2 + d_3
v1 v2

a NaN NaN
b NaN NaN
c NaN NaN
d NaN NaN

In the first example we can see that the columns are combined, even though their names are different,
but in the second we up with a DataFrame with two NaN columns. In other words, operations on a
Series ignore the name while in the DataFrame they do not!

3 Selecting Columns and Rows

• There are a ton of ways to select rows and columns using Pandas.

• When I first learned Pandas this was the most frustrating part of the experience. In order to minimize
the frustration, I recommend focusing on identifying exactly what data object you have and what
data object you want returned and then learning only one method for accessing data in that fashion.

• To specify rows and columns, from a DataFrame, we will use loc and iloc methods.4

• To specify objects, there are a number of different notational devices that can be used:

– For a single column we can use “dot” notation, with a column name after the dot, which returns
a series. Note that this only works if the column name is not a reserved word for a DataFrame.

>>> type(dfCars.tonnage)
<class 'pandas.core.series.Series'>

– Note that a “dot” can be used with any named object, such as an index:

4Another one, “ix”, was common but is now deprecated and will not be acceptable in this course.

231

D
RA
FT

>>> x_2.b
2

– We can also specify a column using square brackets:

>>> type(dfCars['tonnage'])
<class 'pandas.core.series.Series'>

– We can also use double square brackets:

>>> type(dfCars[['tonnage']])
<class 'pandas.core.frame.DataFrame'>

Look at the difference between the previous two examples: the first returned a Series while the
second returned a DataFrame. We will find that this convention routinely reappears when using
pandas – supplying an itterable as a selector returns a DataFrame while an atomic value returns
a Series.

– We can also use loc, though to select all rows we need to prepend a colon:

>>> type(dfCars.loc[:, 'tonnage'])
<class 'pandas.core.series.Series'>

>>> type(dfCars.loc[:, ['tonnage']])
<class 'pandas.core.frame.DataFrame'>

– Keep in mind is that using loc is the preferred method for accessing data based on contents.
One issue that can occur when using alternative methods, such as only using the [[column]]
is that Pandas can interpret this as a row specification, rather than column name. No error is
returned when this occurs – instead an empty DataFrame is returned as no rows match that
definition.

– In this course you should always use loc when selecting rows and columns without
leveraging an index.

– If there is an index, we can specify rows by using loc with the index value:

>>> x_2 = pd.Series([1,2,3,4], index = ['a', 'b', 'c', 'd'], name="v1")

>>> x_2['b']
2

– Strong recommendation: specify both rows and columns when selecting. The reason
for this is that when reading something like df.loc['value'] or df['value'] it’s difficult
to know if this is referring to a row with an index or a column with a name.

– We can use iloc, which is an integer based access for rows and columns, though this requires
knowing that tonnage is the 7th column:

232

D
RA
FT

>>> type(dfCars.iloc[:, 7])
<class 'pandas.core.series.Series'>

>>> type(dfCars.iloc[:, [7]])
<class 'pandas.core.frame.DataFrame'>

– The iloc method takes any standard slice when it is used and can refer to both rows and
columns. For example, the code below selects the first 10 columns and rows 20 through 50.

>>> d_1 = dfCars.iloc[20:50, 0:10]

>>> type(d_1)
<class 'pandas.core.frame.DataFrame'>

>>> d_1.shape
(30, 9)

When looking at the above, some of the methods return DataFrames while others return series.
Keep in mind what is being returned! Many of the issues with Pandas that user’s
encounter is due to an unexpected return type!

• When you start with a Series there is no need to select columns because there is only a single column.

• Now that we know how to convert from a DataFrame to a Series, how do we go the other direction?
To do this we, we use the command to_frame on the series:

>>> type(dfCars.loc[:, 'year'])
<class 'pandas.core.series.Series'>

>>> type(dfCars.loc[:, 'year'].to_frame())
<class 'pandas.core.frame.DataFrame'>

Value Counts

• A really useful Series method is value_counts which returns another series containing the unique
values and the number of occurrences of that value within the series:

>>> dfCars.loc[:, 'tonnage'].value_counts()
tonnage
<10000 lbs 3401
6+ Tons Non-Special Usage 2970
6+ Tons Special Usage 2970
3 Tons 2747
>10000 lbs 2217
5 Tons 2089
4 Tons 1769
0 Tons 429
2 Tons 6
Name: count, dtype: int64

233

D
RA
FT

• By default the value_counts method ignores missing values. If we want to include missing values,
the parameter dropna is set to False:

>>> dfCars.loc[:, 'tonnage'].value_counts(dropna=False)
tonnage
None 22604
<10000 lbs 3401
6+ Tons Non-Special Usage 2970
6+ Tons Special Usage 2970
3 Tons 2747
>10000 lbs 2217
5 Tons 2089
4 Tons 1769
0 Tons 429
2 Tons 6
Name: count, dtype: int64

Content-based selections

• Probably the most common operation done when analyzing data is selecting rows based on a criteria.
When doing this with loc we provide a boolean object of the same length as the DataFrame. For
example, let’s consider the following few lines of code:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCarsC.loc[:, 'vehicletype'] == 'Semi Trailer') , ['countyname']]

>>> dfCarsC.head()
countyname

Appanoose
Jefferson
Mahaska
Clay
Greene

The first line takes our original cars DataFrame and makes a “copy” of it. Why would we do this?
Two reasons:

1. Because we may possibly change our original data and, rather than reload it each time, we can
make a copy so that we can always restart.5

2. Get in the habit of making copies. As we will see later, unexpected issues with pandas can
arise because pandas often creates “views” of a DataFrame, rather than make a copy. It is not
uncommon for analysis to be incorrect because a user fails to account for views vs. copies.

The second line has three components:

1. (dfCarsC.loc [:, 'vehicletype'] == 'Semi Trailer') This creates an array of
True and False values based on the boolean condition. In other words, this returns a series of
41,202 items.

2. dfCarsC.loc[] The loc method, when used in this manner, only returns those rows which
the resulting condition evaluate True, so this is going to keep 1,683 rows.

5This is good practice when doing exploratory data analysis as it allows you to quickly restart if you do something incorrect.

234

D
RA
FT

3. ['countyname'] This portion of the code keeps only the countyname.

Note the following:

– Pandas uses the double equal “==” to do comparison. Keep this in mind!

– Why did we have to re-assign the variable (dfCarsC =) in the second line? We had to reassign
this because the loc command does not do in-place changes. If we didn’t do this re-assignment
dfCarsC would not have changed.

– This returns a DataFrame and not a Series since we selected the column with a list. If we,
instead, used 'countryname' not in a list form we would get a 1 by 1,683 Series instead of a
series of 1,683.

– Put all boolean objects in parenthesis when using Pandas!!! Just get used to it, evaluation
precedence is AND/OR above equality and inequality, meaning that things will go badly if you
don’t.

– This example has nested a number of different “things” together. One way to make sure that
your Pandas code is readable is by making sure not to overload too many operations into a
single line of code.

• Let’s do another one! How about we select all columns and only those rows with registrations larger
than 10,000? Unsurprisingly, basic row-by-row math operations also work fine.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 10000), :]

>>> dfCarsC
year countyname motorvehicle vehiclecat vehicletype tonnag [...]

------ ------------ -------------- ------------ --------------------- ------ [...]
2010 Johnson Yes Truck Truck 3 Tons [...]
2008 Cerro Gordo Yes Automobile Automobile [...]
2006 Wapello Yes Automobile Automobile [...]
2009 Black Hawk No Trailer Small Regular Trailer [...]
2012 Plymouth Yes Automobile Automobile [...]

[...]

• We can combine multiple conditions using “and” (&), “or” (|) and not (∼). For example, if we
want to get all data from Wright county with more than 1,200 registrations we can run the following
commands:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 1200)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :]

>>> dfCarsC.head()
year countyname motorvehicle vehiclecat vehicletype tonna [...]

------ ------------ -------------- ------------- --------------------- ----- [...]
2015 Wright Yes Truck Truck 3 Ton [...]
2005 Wright Yes Automobile Automobile [...]
2015 Wright Yes Multi-purpose Multi-purpose [...]
2008 Wright Yes Truck Truck 3 Ton [...]
2011 Wright No Trailer Small Regular Trailer [...]

Annoyingly these lines are getting longer and longer which makes them more and more difficult
to read. To get around this problem, we can add parenthesis around the expression. Adding a

235

D
RA
FT

parenthesis allows us to arbitrarily put hard returns and tabs in the expression for organizational
purposes:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'registrations'] > 1200)

& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :])

>>> dfCarsC.head()
year countyname motorvehicle vehiclecat vehicletype tonna [...]

------ ------------ -------------- ------------- --------------------- ----- [...]
2015 Wright Yes Truck Truck 3 Ton [...]
2005 Wright Yes Automobile Automobile [...]
2015 Wright Yes Multi-purpose Multi-purpose [...]
2008 Wright Yes Truck Truck 3 Ton [...]
2011 Wright No Trailer Small Regular Trailer [...]

• We can also nest multiple layers of logic using parenthesis:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC.loc[(
((dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000))
|
((dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200))
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), :])

which will return all rows from Wright county with between 1,200 and 3,000 registrations or 4,000
and 4,200 registrations.

• Keep in mind when writing these commands is that the result of what is inside loc needs to be a
list of true/false boolean expressions of the same length as the DataFrame.

• We can combine these operations to filter both on rows and columns:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC.loc[(
((dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000))
|
((dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200))
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), 'countyname'])

The above will return a Series only containing the countyname while the below will be a DataFrame
with countyname and the number of registrations:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(
(dfCarsC.loc[:, 'registrations'] > 1200) & (dfCarsC.loc[:, 'registrations'] <= 3000)
|
(dfCarsC.loc[:, 'registrations'] > 4000) & (dfCarsC.loc[:, 'registrations'] <= 4200)
)
& (dfCarsC.loc[:, 'countyname'] == 'Wright'), ['countyname','registrations']]

236

D
RA
FT

4 Column Types Conversion

• We occasionally need to switch types on columns. To do this we use the astype method. Consider
the following example below:

>>> dfCars.loc[:, 'registrations'].dtype
int64

>>> dfCars.loc[:, 'registrations'].astype(str).dtype
object

>>> dfCars.loc[:, 'registrations'].astype(float).dtype
float64

• The astype is most commonly used when converting between integers, floats and strings. While
there is some ability for the astype method to be used when dealing with dates and date related
objected it is not recommend and there are better, most consistent options available.

5 Dealing with NaN

• Consider the following code:

>>> dfCarsC = dfCars.copy()

>>> dfCars217 = dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] > 217000)
,['year', 'registrations', 'annualfee']]

>>> print(dfCars217)
year registrations annualfee

2213 2016 217540 32035419.0
2372 2006 218883 NaN
12890 2015 218975 32058351.0
15971 2014 218211 31790136.0
21352 2005 218235 NaN
25896 2008 217073 24160802.0

We can see that in this DataFrame we have encountered a number of NaN values which is how missing
values are identified in Pandas. To locate these types of values we do not use equality operators, but
instead the Series method isna as shown below:

237

D
RA
FT

>>> dfCars217.loc[:, 'annualfee'].isna()
2213 False
2372 True
12890 False
15971 False
21352 True
25896 False
Name: annualfee, dtype: bool

>>> dfCars217.loc[:, 'annualfee'] > 1
2213 True
2372 False
12890 True
15971 True
21352 False
25896 True
Name: annualfee, dtype: bool

>>> dfCars217.loc[:, 'annualfee'] < 1
2213 False
2372 False
12890 False
15971 False
21352 False
25896 False
Name: annualfee, dtype: bool

• isna can also be applied to entire DataFrames:

>>> dfCars.isna()
year countyname motorvehicle vehiclecat vehicletype tonnage r [...]

------ ------------ -------------- ------------ ------------- --------- --- [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 0 [...]
0 0 0 0 0 1 [...]
0 0 0 0 0 0 [...]

[...]

As with SQL, NaN values evaluate false when given mathematical comparisons. In the example
above the NaN values were false for both less-than and greater-than one.

• To identify rows which are not NaN we can use a “not” operator in the following manner:

>>> dfCars217.loc[˜(dfCars217.loc[:, 'annualfee'].isna()), :]
year registrations annualfee

2213 2016 217540 32035419.0
12890 2015 218975 32058351.0
15971 2014 218211 31790136.0
25896 2008 217073 24160802.0

• There is no NaN value for integers. Any operation on an integer column which generates a NaN

238

D
RA
FT

will automatically turn it into a float.

>>> x_1
0 1
1 2
2 3
3 4
Name: v1, dtype: int64

>>> x_1.dtypes
int64

>>> x_1[3] = np.nan

>>> print(x_1)
0 1.0
1 2.0
2 3.0
3 NaN
Name: v1, dtype: float64

>>> x_1.dtypes

• For NaN values we can use fillna in order to replace those values with another:

>>> dfCars.loc[:, 'countyname'].fillna('No County')

fillna can also be used with two columns.

>>> dfCars.loc[:, 'tonnage'].fillna(dfCars.loc[:, 'vehiclecat'])
tonnage

Bus
Moped
3 Tons
Trailer
3 Tons
[...]

6 Choosing the largest and smallest values

• In the next module we will talk about sorting DataFrames, but for now we are going to cover how
to return only certain rows of a DataFrame based on their order. Aay that we want to return the
largest annualfee value in Scott county. To do this we use the nlargest method which takes two
input variables: the number to return and the series to sort by.

239

D
RA
FT

>>> dfCarsC = dfCars.copy()

>>> (dfCarsC.loc[(dfCarsC.loc[:, 'countyname'] == 'Scott'), :]
.nlargest(1, 'annualfee').loc[:, 'annualfee'])

33497 19235858.0
Name: annualfee, dtype: float64

We can do the same thing with smallest values:

>>> dfCarsC = dfCars.copy()

>>> (dfCarsC.loc[(dfCarsC.loc[:, 'countyname'] == 'Scott'), :]
.nsmallest(1, 'annualfee').loc[:, 'annualfee'])

2595 0.0
Name: annualfee, dtype: float64

Two important features of the above:

1. The column 'annualfee' has NaN values in it, but those values were ignored in both the
smallest and largest operator.

2. We were able to append .loc[:, 'annualfee'] to the end of the statement in both cases
after the largest/smallest method. How could we do that? Once again, it has to do with
understanding what is being returned. In this case, the method returns a DataFrame which we
can then apply any of our selection methods.

7 Manipulating Data & Method Chaining

• So far we have only taken data, filtered rows and selected columns. In this section we are going to
do some basic manipulation of the underlying DataFrame.

• Let’s start by creating a column, which we can do by using some of the previous selection operators,
but this time with a new name:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[:, 'newcol1'] = 5

>>> dfCarsC.loc[:, 'newcol1'].head()
0 5
1 5
2 5
3 5
4 5
Name: newcol1, dtype: int64

• Mathematical operations work on a row-by-row basis:

240

D
RA
FT

>>> dfCarsC.loc[:, 'newcol2'] = dfCarsC.loc[:, 'registrations'] + 5

>>> dfCarsC.loc[:, ['registrations', 'newcol2']].head()
registrations newcol2

0 5 10
1 198 203
2 5020 5025
3 366 371
4 2507 2512

• Creating columns based on other columns (of the same shape) is also straightforward:

>>> dfCarsC.loc[:, 'newcol3'] = dfCarsC.loc[:, 'registrations'] / dfCarsC.loc[:, 'annualfee']

>>> dfCarsC.loc[:, 'newcol4'] = dfCarsC.loc[:, 'registrations'] * dfCarsC.loc[:, 'annualfee']

>>> dfCarsC.loc[˜(dfCarsC.annualfee.isna())
,['registrations', 'newcol3', 'newcol4', 'annualfee']].head()

registrations newcol3 newcol4 annualfee
0 5 0.007353 3.400000e+03 680.0
1 198 0.142857 2.744280e+05 1386.0
2 5020 0.016201 1.555457e+09 309852.0
3 366 0.019877 6.739158e+06 18413.0
4 2507 0.018752 3.351608e+08 133690.0

• Lets take a look at that special case where we divide by zero:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.loc[(dfCars.loc[:, 'annualfee'] == 0), ['annualfee', 'registrations']].head()

>>> dfCarsC.loc[:, 'registrations'] / dfCarsC.loc[:, 'annualfee']
2365 inf
2595 inf
2819 inf
2842 inf
3087 inf
dtype: float64

We can see that no error was generated but a new value np.inf was used. Unlike missing values,
standard operators can be used on this special value:

>>> np.NaN == np.NaN
False

>>> np.inf == np.inf
True

>>> np.inf > 1
True

>>> np.inf < 1
False

• The other way to create a new column is by using the assign method. Using the assign method,
rather than the loc syntax above allows us to “method chain”, because it returns a DataFrame

241

D
RA
FT

which has all DataFrame methods available to it:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.assign(newcol3=dfCarsC.loc[:, 'registrations']/dfCarsC.loc[:, 'annualfee']))

In the example above we use the assign operator to create a new column which is the registrations
divided by the annual fee. This is exactly the same result as previously, but this time we applied a
more functional method to complete this task.

• The assign method also works when setting static values, such as in the following example, which
creates a column of zeros. It can also be used with multiple column assignments, as shown below,
by separating them with commas.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.assign(newcol3=dfCarsC.loc[:, 'registrations']/dfCarsC.loc[:, 'annualfee'], newcol4 = 0)
.nlargest(5, 'newcol3')
)

• In general we will try to use method chaining methods to manipulate our data because it leads to
much more readable code.

Dropping, Renaming and Inplace methods

• We can also drop, or remove, columns from a DataFrame using the drop method on a DataFrame.
There are two common ways of using this method, both shown below:

>>> dfCarsC = (dfCars
.copy()
.assign(newcol1 = 1, newcol2=2, newcol3=3, newcol4=4)
)

>>> dfCarsC = dfCarsC.drop(['newcol1', 'newcol2'], axis=1)

>>> dfCarsC = dfCarsC.drop(columns=['newcol3', 'newcol4'])

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

The first is to provide a list and se the axis option to 1 lets Pandas know that we are dropping
columns and not indexed rows. The axis variable is used to specify if an operation should be done
along rows or columns.6

The second way of using this method is by specifying the named parameter columns and providing
a list of strings.

The drop method returns a DataFrame with the chosen objects removed and does not modify the

6While it seems obvious that we are trying to drop columns in the example, it’s just as possible that we have an index and
we could be trying to drop rows instead. This variable allows us to be certain which we are doing.

242

D
RA
FT

current DataFrame. If we wish to change the current DataFrame (and return None) then we use the
inplace option to the method:

>>> dfCarsC = (dfCars
.copy()
.assign(newcol1 = 1, newcol2=2, newcol3=3, newcol4=4)
)

>>> dfCarsC.drop(['newcol1', 'newcol2'], axis=1, inplace=True)

>>> dfCarsC.drop(columns=['newcol3', 'newcol4'], inplace=True)

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

• DataFrame methods commonly have an inplace option, which can be helpful to use and easier to
read. Be wary however, as it is easy to run into “weird” errors when mixing both inplace and not
inplace commands. In my experience you should either always use inplace or never. Mixing
them causes problems.

• There are two common ways to rename columns. We can use the rename method with the column
parameter set or we can reassign the labels by setting the columns attribute on the DataFrame
object.

• The second, setting the columns attribute, works because the attribute itself is accessible and while
it is shown as an index type, it can be set by using any itterable object, such as a list.

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.columns
Index(['year', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',

'tonnage', 'registrations', 'annualfee', 'completecategory'],
dtype='object')

• The columns attribute itself is also an index type, but it can be overwritten with any list type to
rename the columns. For example:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.columns = ['year2', 'countyname', 'motorvehicle', 'vehiclecat', 'vehicletype',
'tonnage', 'registrations', 'annualfee', 'completecategory']

>>> dfCarsC.loc[:, 'year2'].head()
year2

2008
2011
2012
2015
2016

The column “year” was renamed by changing the name in the list. The object associated with
columns is not mutable and thus must be overwritten and not modified.

243

D
RA
FT

• The other way to rename a column is via the rename method. rename takes a parameter named
column which we set equal to a dictionary of the form {old_column : new_column}

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.rename(columns={'tonnage' : 'tonnage2'})

One truly annoying thing about the Pandas rename function is that if you forget the columns=
parameter, then no error is returned and no column is renamed! In this situation, the command
looks for an index value to rename and doesn’t find it, so no rename occurs. In other words, the
columns parameter works the same way that the axis parameter did in other commands.

Like many of the other methods, this one also has an “inplace” operator, so the following is equivalent
to the previous operation:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.rename(columns={'tonnage' : 'tonnage2'}, inplace=True)

• We can use dictionary notation to do multiple renames at the same time using this method:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.rename(columns={'year' : 'year2', 'tonnage' : 'tonnage2'})

8 Indexes: Creating and Dropping

• So far our discussion has avoided any mention of how indexes are used in Pandas. In this section we
discuss some of the basic use of indexes on the row-level.

• The most common type of index is a RangeIndex, which is a simple integer increment. This is the
default index set upon loading a dataset:

>>> dfCars.index
RangeIndex(start=0, stop=41202, step=1)

• To convert a column into an index we use the set_index method which takes in a list of columns
and creates an index based upon it. For example, the following returns a dataset with an index
associated with the “countyname” (which has many repeating values):

>>> dfCarsC = dfCars.set_index('countyname')

As with many statements in pandas you can have the effect occur in place, rather than returning a
new value:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.set_index('countyname', inplace=True)

• Index values need not be unique in pandas!

244

D
RA
FT

• Indexes can also be multi-level (or hierarchal). We will talk more about this in 4. To add a multi-level
index to a DataFrame we supply a list to the set_index() method:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.set_index(['countyname', 'year'])

>>> ans = dfCarsC.head()
motorvehicle vehiclecat vehicletype tonnage r [...]

------------------- -------------- ------------ -------------- --------- --- [...]
('Ida', 2008) Yes Bus Bus [...]
('Jasper', 2011) Yes Moped Moped [...]
('Harrison', 2012) Yes Truck Truck 3 Tons [...]
('Palo Alto', 2015) No Trailer Travel Trailer [...]
('Adair', 2016) Yes Truck Truck 3 Tons [...]

• Multi-level index are represented (when printing) as tuples. We also use tuple-like notation to access
them, as we will discuss later.

• We can also remove the index (in that we return it to a column value) by using the reset_index
method:

>>> dfCars.reset_index()

When using this method, the column name of the former index is equal to the name of the index
(e.g. what can be found in .index.name on the DataFrame.)

• If we want to reset the index and then not have the index returned as a column, we use the drop
parameter:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.set_index(['countyname', 'year'])
.reset_index(drop=True)
)

>>> dfCarsC.dtypes
motorvehicle object
vehiclecat object
vehicletype object
tonnage object
registrations int64
annualfee float64
completecategory object
dtype: object

In the above example, the original two columns (countyname and year) which we turned into the
index no longer appear.

• One caveat is that even if you use reset_index, this doesn’t create a DataFrame without an index.
Instead, a standard range index will be created with each row having an index equal to the current
row number.

• Finally, we can assign index values by simply assigning them using an object of equal shape.

245

D
RA
FT

>>> t = dfCars.head()

>>> t.index = np.arange(0, 2*t.shape[0],2)

>>> t.index
Index([0, 2, 4, 6, 8], dtype='int64')

9 Views and Copies

• The second most common problem that people have (after not knowing what is being returned) is
failing to be explicit about creating copies of the data and instead operate on a view.

• What do I mean by “view” vs. “copy”? A “view”, sometimes called a “shallow copy” is when
we create an object based on another object by creating a pointer to a memory space, rather than
creating an explicit copy of that data in memory.

• Why would we do this? Namely speed and memory. A “shallow copy”, sometimes called a “zero
copy” is much, much faster and places less of a burden on the CPU.

• The downside of this is that it places a burden on the user to understand when a copy or a view is
created. Unfortunately in pandas, those rules are not as explicit as they should be and it is common
for “weird” behavior to occur because of this.

• We are going to look at five examples of how this behavior can arise.

1. Simple View: In the following example we can see that pandas has created a view of the
underlying object.

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df

>>> df3 = df.iloc[0:1, 0:1]

>>> df.loc[:, 'a'] = 5

>>> print(df2)
a b

0 5 0
1 5 1

>>> print(df3)
a

0 5

2. Simple Copy: In the following example we can see that a copy has been created. We use the
.copy() method in order to explicitly make a copy of the DataFrame.

246

D
RA
FT

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df.copy()

>>> df.loc[:, 'a'] = 5

>>> print(df2)
a b

0 0 0
1 1 1

3. Wut? (pt. 1):

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> print(df)
a b

0 0 0
1 1 1

>>> df2 = df

>>> df3 = df.iloc[0:1, 0:1]

>>> df.loc[:, 'a'] = 5.1

>>> print(df2)
a b

0 5.1 0
1 5.1 1

>>> print(df3)
a

0 0

4. Wut? (pt. 2):

247

D
RA
FT

5. Wut? (pt.3): In this example you will get a SettingWithCopyWarning. This is called
“index chaining” and is one of the reasons that we require use loc in this course. It is way too
easy to end up in situations where this occurs if you use non-loc based access methods.

248

D
RA
FT

>>> df = pd.DataFrame({"a": np.arange(2), "b": np.arange(2)})

>>> df[df.a == 0]['b'] = 100

>>> print(df)
a b

0 0 0
1 1 1

>>> df.loc[(df.loc[:, 'a'] == 0), 'b']= 100

>>> print(df)
a b

0 0 100
1 1 1

• What have we learned from the above? You have to be careful with views vs. copies. Assuming one
or the other can lead to significant problems and unexpected behavior.

• Use loc as a way to access data. It’s more likely to put you on a path toward a copy.

• The method _is_view should return a boolean on if the object is a view or not. I’ve had varying
degrees of luck with it and don’t recommend relying on it.

• Use copy frequently when you are not intentionally maintaining a view – and maybe most impor-
tantly, never assume what you are working on.

249

D
RA
FT

250

D
RA
FT

Chapter 15

More Manipulations and Types

251

D
RA
FT

Contents

1 Sorting DataFrames . 253

2 Dealing with Duplicates . 256

3 Using Type specific functions . 258

3.1 Dates . 258

3.2 Strings . 260

4 CASE style statements and the “isin” operator . 264

5 Regex Pattern Matching . 265

252

D
RA
FT

1 Sorting DataFrames

• If we want to sort a DataFrame or Series then we use the sort_values method, which returns the
same object with the values sorted.

• This method returns a DataFrame or Series in-which the data is sorted.

• If you are sorting based on a single column you can pass the column name in directly:

>>> dfCars.sort_values('annualfee')

If you wish to sort based on multiple columns, you pass them in as a list:

>>> dfCars.sort_values(['countyname', 'annualfee'])

• The default sort order is ascending (lowest to highest), but we can change that using the “ascending”
parameter. This needs to be a boolean (or list of booleans) with a length equal to the number of
columns being sorted. Two examples below:

>>> dfCars.sort_values(['countyname', 'annualfee'], ascending = [False, True])

>>> dfCars.sort_values('countyname', ascending = False)

• The above two queries do not modify the original DataFrame, but only return a sorted version. If
we wish to modify the original DataFrame we have to either use another assignment operator or use
the inplace argument:

253

D
RA
FT

>>> d_1 = dfCars.loc[:,['annualfee', 'registrations']]

>>> d_1.head()
annualfee registrations

0 680.0 5
1 1386.0 198
2 309852.0 5020
3 18413.0 366
4 133690.0 2507

>>> d_1.sort_values('annualfee').head()
annualfee registrations

37907 0.0 1
34713 0.0 1
4454 0.0 1
38246 0.0 3
30700 0.0 1

>>> d_1.head()
annualfee registrations

0 680.0 5
1 1386.0 198
2 309852.0 5020
3 18413.0 366
4 133690.0 2507

>>> d_1.sort_values('annualfee', inplace=True)

>>> d_1.head()
annualfee registrations

37907 0.0 1
34713 0.0 1
4454 0.0 1
38246 0.0 3
30700 0.0 1

• Before proceeding, take a look at the index numbers on the rows above. The first d_1.head()
call returns an index of 0 through 4. The next two, however, return an index of the numbers that
mapped to the original RangeIndex row location (37907, 34713, ...). This means that the index on
the DataFrame returned is no longer in order. If we wish to reorder the index so that it matches the
actual row number we will need to change the index, as well will see below.

• Note that the above has important implications for how operations work in pandas. Specifically,
operations follow the index – not the row order! This is true even if we do not explicitly specify an
index.

254

D
RA
FT

>>> d_1 = pd.DataFrame([1,2,3], columns=['a'])

>>> d_2 = d_1.sort_values(['a'], ascending=False).copy()

>>> d_1
a

1
2
3

>>> d_2
a

3
2
1

>>> d_1 + d_2
a

2
4
6

The important feature of pandas to keep in mind is that all operations are index-based, unless
specified otherwise.

• In my experience it is most common to want to sort by the internal values of the data which are not
an index. If, however, we wish to sort based on the index values, then we can use the sort_index
command which will return a DataFrame or Series sorted by the index:

>>> d_1 = pd.DataFrame({'A' : [1,2,3], 'B' : [3,2,1]})

>>> d_1 = d_1.sort_values(['B'], ascending = True)

>>> d_1
A B

--- ---
3 1
2 2
1 3

>>> d_1.sort_index()
A B

--- ---
1 3
2 2
3 1

You can see that the DataFrame which was returned by the sort_index has now been sorted along

255

D
RA
FT

that dimension. This command also has an inplace argument.

• How are Nulls handled? Unlike SQL which treats Nulls as the largest value and last alphabetically,
pandas treats Nulls as separate condition. Specifically, Nulls are always put last. If you want to
change this behavior there is a named argument na_position which can be set to either first
or last which determines the position of Nulls in the sort order.

>>> dfCars.sort_values(['annualfee'], na_position='first').loc[:, 'annualfee'].head()
11 NaN
14 NaN
22 NaN
23 NaN
44 NaN
Name: annualfee, dtype: float64

>>> dfCars.sort_values(['annualfee'], na_position='last').loc[:, 'annualfee'].head()
37907 0.0
34713 0.0
4454 0.0
38246 0.0
30700 0.0
Name: annualfee, dtype: float64

2 Dealing with Duplicates

• A frequent work flow when duplicate values occur within a dataset is removing them. Pandas provides
a few useful operations in order to do this: unique, drop_duplicates and duplicated.

• The first of these, unique works on a Series and returns the unique values within that Series:

>>> dfCars.loc[:, 'vehiclecat'].unique()
['Bus' 'Moped' 'Truck' 'Trailer' 'Multi-purpose' 'Motor Home' 'Automobile'
'Motorcycle' 'Autocycle']

This operation returns an array, not a Series, so be careful!

• The second operation, drop_duplicates, works on both Series and DataFrames and returns the
same object that it is called upon. For example, the following operation does the same thing as the
previous code snippet, but this time returns a Series:

>>> dfCars.loc[:, 'vehiclecat'].drop_duplicates()
0 Bus
1 Moped
2 Truck
3 Trailer
13 Multi-purpose
22 Motor Home
50 Automobile
81 Motorcycle
411 Autocycle
Name: vehiclecat, dtype: object

• This operation can also be done on entire DataFrames:

256

D
RA
FT

>>> dfCars.loc[:, ['vehiclecat', 'year']].drop_duplicates().head()
vehiclecat year

0 Bus 2008
1 Moped 2011
2 Truck 2012
3 Trailer 2015
4 Truck 2016

This example returns a DataFrame with only 142 rows, which contains the unique values of the two
specified columns. As in SQL, this does not create data. If there is combination of data points which
is not present within the original data that combination will not appear in the result.

• One common operation we want to handle is removing duplicates from a DataFrame based on a
subset of the columns in the DataFrame. We can do this using the drop_duplicates method with
the subsetargument set to a list of the columns we want to return as unique.

• Dropping duplicates in this matter raises the issue of which, non-de-duplicated rows do we want to
keep? Specifically consider the following example below:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'countyname'] == 'Polk')

& (dfCarsC.loc[:, 'completecategory'] == 'Motor Home - A')
, :]

.sort_values('year')
)

>>> # SPOT

>>> dfCarsC.drop_duplicates(subset='countyname')
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2005 Polk Yes Motor Home Motor Home - A [...]

>>> dfCarsC = dfCarsC.sort_values('year', ascending=False)

>>> dfCarsC.drop_duplicates(subset='countyname')
year countyname motorvehicle vehiclecat vehicletype tonnage [...]

------ ------------ -------------- ------------ -------------- --------- -- [...]
2021 Polk Yes Motor Home Motor Home - A [...]

• We can see that in the above example we use the drop_duplicates method and, in the first
example it returns the row from 2005 while the second returns the row from 2021. If we were doing
an analysis where we wanted the result of this command than we have cognizant of the current row
order since this method, by default, keeps the first row that it encounters within that DataFrame.

• Looking at that example, consider the spot where there is a comment in the code above. If someone
later came and did something which switched the sort order in the DataFrame then the analysis
could be changed without registering an error – subsequent analysis would therefore be based on a
different DataFrame and return a different number.

• Because of this, I strongly recommend (nay, require), all drop_duplicates in code bases I oversee
to have their sort order fully specified with method chaining, such as in the below.

257

D
RA
FT

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = (dfCarsC
.loc[(dfCarsC.loc[:, 'countyname'] == 'Polk')

& (dfCarsC.loc[:, 'completecategory'] == 'Motor Home - A')
, :]

.sort_values('year')
)

>>> (dfCarsC
.sort_values(['countyname', 'year'], ascending=False)
.drop_duplicates(subset=['countyname'], keep='first')
)

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- --------- -- [...]

2021 Polk Yes Motor Home Motor Home - A [...]

• In the above I have also added the keep argument to the command. I do this because, while this is
the default behavior, I can’t (and don’t expect) others to remember what is the default. Putting it
in works as a reminder.

• A final useful command is duplicated which returns a boolean series which identifies if a particular
row is a duplicate or not. Just like the drop_duplicates method it can take both a subset of
columns as well as a keep named argument to guide which rows are deemed a duplicate or not.

3 Using Type specific functions

• As can be expected with any data focused library, Pandas has a large number of useful type specific
functions. Type specific functions are functions which are only allowed to operate on data types
which have a particular type. To reach these methods in Pandas we use a set of Series methods as
accessor attributes.

• In this section we will consider two sets of type specific functions: those that work on Dates and
those that work on Strings.

3.1 Dates

• Date and date related objects are built from the standard Python datatime library.

• There are two commonly used data types:

1. The datetime64 type which represents a discrete date and time.

2. The timedelta type which represents an interval.

• There are four common operations we want to do with dates:

1. Convert string to datetime: The two most common ways of doing this:

(a) Upon Loading: When the data is being loaded, there are ways to tell Pandas that a par-
ticular column is a date. When loading CSV files, the read_csv method has an argument
called parse_dates which accepts a list of columns which are converted upon loading.
Note that this method tries to infer the date from the data present and frequently fails.

(b) Via to_datetime: Using this method entails either replacing a column or assigning a
new column using this built-in Pandas method:

258

D
RA
FT

>>> dfMTA.loc[:, 'mtadt'] = pd.to_datetime(dfMTA.loc[:, 'mtadt'], format='%m/%d/%Y')

Both the to_datetime method as well as a number of other date methods require the user
to specify the explicit format of the date string to be processed using the strftime/strptime
formatting system. This system is a common method of defining the date type in data processing
and is based upon an older unix/C standard.1 The function strftime function takes a date object
and returns a string while the strptime takes a string and returns a date object.

The format uses a set of conversion characters, which begin with a % to represent parts of a
date. These conversion characters and then combined with ordinary characters (everything else)
to combine to specify the final date format. For example, consider the following specification:
%Y-%m-%d which would represent the year, month and date, separated by dashes. You can see
further examples in Table 15.1 below.

Syntax Example Description

%Y-%m-%d 2022-02-02 Four-digit year and zero padded
month and day

%m/%d/%Y %H:%M:%S 03/02/2023 14:55:22 M/D/Y (all zero padded) and
hour/min/sec with a 24 hr clock

Table 15.1: strftime examples

The Python documentation has a full list of acceptable codes. That documentation can be found
here: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

2. Extract a date component: Once you have a datetime object, you can use the db accessor
to extract a portion of the date from it. In this case we use the dt followed by what we are
trying to extract:

>>> dfMTA.loc[:, 'mtadt'].dt.year.head()
0 2015
1 2015
2 2015
3 2015
4 2015
Name: mtadt, dtype: int32

Options for this include things like year, month, day and dayofweek.

3. Convert datetime to string: As discussed above we can use the strftime style formatting
with the dt accessor function. For example:

>>> dfMTA.loc[:, 'mtadt'].dt.strftime('%Y-%m').head()
0 2015-11
1 2015-11
2 2015-11
3 2015-11
4 2015-11
Name: mtadt, dtype: object

1You can find a link to the man page here: https://man7.org/linux/man-pages/man3/strftime.3.html

259

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes
https://man7.org/linux/man-pages/man3/strftime.3.html

D
RA
FT

4. Basic date math and comparisons: To add and subtract times we use a Timedelta object,
which represents a length of time to be applied.

>>> (dfMTA.loc[:, 'mtadt'] + pd.Timedelta(days=2)).head()
0 2015-11-30
1 2015-11-30
2 2015-11-30
3 2015-11-30
4 2015-11-30
Name: mtadt, dtype: datetime64[ns]

Timedelta objects allow us to consistently do math on datetime objects, so use these rather
than relying on other methods. Comparison operators (=, >,<) work as expected:

>>> dfMTA.loc[(dfMTA.loc[:, 'mtadt'] > '2015-01-01')].head()
plaza mtadt hr direction vehiclesez vehiclescash

0 1 2015-11-28 0 I 477 205
1 1 2015-11-28 0 O 486 252
2 1 2015-11-28 1 I 350 171
3 1 2015-11-28 1 O 307 182
4 1 2015-11-28 2 I 280 133

• Unlike in SQL there is no obvious date_trunc method. While one might expect the floor
command to do this, there is an open issue on pandas:

Pandas is broken: https://github.com/pandas-dev/pandas/issues/15303#

• The current date and time can be found with the following commands:

>>> pd.to_datetime('now')
2023-08-14 20:50:19.553795

>>> pd.to_datetime('today')
2023-08-14 20:50:19.553917

These commands return the current date and time at the time that the code is run. This is useful
when trying to write code which would analyze a rolling time frame, such as “the last 90 days.”

3.2 Strings

• To reference string functions in Pandas, we call the str accessor on a column and then reference the
string function.

• These methods exclude NaN values and usually match standard string methods in Python and Excel.
Table 15.2 contains a list of some useful functions that can be found in Pandas.

• Consider the following example, which uppercases the countyname:

260

https://github.com/pandas-dev/pandas/issues/15303#

D
RA
FT

Name Description

lower / upper Lower or Upper Cases a string
len Returns the length of the string
strip Removes white spaces and new line characters from a string
split Splits a string into a list from a given pattern
startswith / endswith Returns a boolean based on if the string follows the pattern
contains Returns a boolean if the string contains a pattern

Table 15.2: String Functions in Pandas

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[:, 'UC'] = dfCarsC.loc[:, 'countyname'].str.upper()

>>> dfCarsC.loc[:, ['countyname', 'UC']].head()
countyname UC

0 Ida IDA
1 Jasper JASPER
2 Harrison HARRISON
3 Palo Alto PALO ALTO
4 Adair ADAIR

In this example, the countyname is referenced as a series and then the str accessor is called. After
the str accessor is called then the string function upper is called. This returns the uppercased
value.

• If we want to refer to specific portions of a string (such as the first or last character), we use the str
accessor and then apply our normal slicing operations afterwards. For example, to get the first two
characters of a string we could do the following:

>>> dfCars.loc[:, 'countyname'].str[0:2].head()
0 Id
1 Ja
2 Ha
3 Pa
4 Ad
Name: countyname, dtype: object

As with the rest of Python, strings start with zero and a slice is inclusive on the left side, but not on
the right. The object returned is another Series.

• To concat strings together we use the cat method within the str accessor or a + :

261

D
RA
FT

>>> dfCars.loc[:, 'countyname'].str.cat(dfCars.loc[:, 'countyname'])
0 IdaIda
1 JasperJasper
2 HarrisonHarrison
3 Palo AltoPalo Alto
4 AdairAdair

...
41197 MarionMarion
41198 WorthWorth
41199 WinnebagoWinnebago
41200 DelawareDelaware
41201 HumboldtHumboldt
Name: countyname, Length: 41202, dtype: object

>>> dfCars.loc[:, 'countyname'] + dfCars.loc[:, 'countyname']
0 IdaIda
1 JasperJasper
2 HarrisonHarrison
3 Palo AltoPalo Alto
4 AdairAdair

...
41197 MarionMarion
41198 WorthWorth
41199 WinnebagoWinnebago
41200 DelawareDelaware
41201 HumboldtHumboldt
Name: countyname, Length: 41202, dtype: object

• Using the split function provides us an interesting application of the object data type. Let’s look
at the top of the “vehicletype” column in the DataFrame:

>>> dfCars.loc[:, 'vehicletype'].head(10)
0 Bus
1 Moped
2 Truck
3 Travel Trailer
4 Truck
5 Truck
6 Truck
7 Truck
8 Moped
9 Truck
Name: vehicletype, dtype: object

As can be seen in the result, there are multiple different types of vehicles, some with one word and
some with multiple words. If we use the split method on this, we will create a list:

262

D
RA
FT

>>> dfCars.loc[:, 'vehicletype'].str.split(' ').head(10)
0 [Bus]
1 [Moped]
2 [Truck]
3 [Travel, Trailer]
4 [Truck]
5 [Truck]
6 [Truck]
7 [Truck]
8 [Moped]
9 [Truck]
Name: vehicletype, dtype: object

Each of the phrases in the original dataset has been turned into a list – and the lists do not have
the same number of items! Surprisingly, we can store this in the DataFrame itself and the series will
have type “object”, though the contents will be a list!

>>> dfCarsC = dfCars.copy()

>>> dfCarsC = dfCarsC.assign(newcol = dfCars.loc[:, 'vehicletype'].str.split(' '))

>>> dfCarsC.loc[:, 'newcol'].dtypes
object

>>> type(dfCarsC.loc[:, 'newcol'].iloc[0])
<class 'list'>

• Since the string functions themselves are accessible from any string series, they can be chained
together to generate more complex operations:

>>> dfCars.loc[:, 'countyname'].str.upper().str.startswith('A')
0 False
1 False
2 False
3 False
4 True

...
41197 False
41198 False
41199 False
41200 False
41201 False
Name: countyname, Length: 41202, dtype: bool

• We can also use them to locate information via the loc function. In the example below we added a
fillna command since there are some NaNs in the underlying data and Pandas doesn’t allow loc
indexing with NaN’s present!

263

D
RA
FT

>>> dfCars.loc[(dfCars.loc[:, 'tonnage'].str.contains('Tons')).fillna(False), :]
year countyname motorvehicle vehiclecat vehicletype tonnage r [...]

------ ------------ -------------- ------------ ------------- --------- --- [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2016 Adair Yes Truck Truck 3 Tons [...]
2016 Van Buren Yes Truck Truck 4 Tons [...]
2018 Story Yes Truck Truck 3 Tons [...]
2019 Cerro Gordo Yes Truck Truck 5 Tons [...]

[...]

Specifically, if we try the command above without the fillna present the result will be:

ValueError: cannot index with vector containing NA / NaN values

• Finally, the str accessory function returns a string, so we can use standard string slicing functions
to manipulate strings.

>>> dfCars.loc[:, 'countyname'].str[0:3].str.upper().head()
0 IDA
1 JAS
2 HAR
3 PAL
4 ADA
Name: countyname, dtype: object

4 CASE style statements and the “isin” operator

• To mimic SQL style CASE statements, the loc operator can be used.

• For example, lets say that we wish to create a column (“regsize”) which is equal to ‘Small’, ‘Medium’
or ‘Large’, depending on if the number of registrations is less than 200, between 200 and 500 and
more than 500. One way to accomplishing this:

>>> dfCarsC = dfCars.copy()

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] < 200), 'regsize'] = 'Small'

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] >= 200)
& (dfCarsC.loc[:, 'registrations'] < 500), 'regsize'] = 'Medium'

>>> dfCarsC.loc[(dfCarsC.loc[:, 'registrations'] >= 500), 'regsize'] = 'Large'

>>> dfCarsC.loc[:, ['registrations', 'regsize']].head()
registrations regsize

0 5 Small
1 198 Small
2 5020 Large
3 366 Medium
4 2507 Large

• The loc method is a bit overloaded within Pandas in the sense that it can be used in a variety of
different ways that can be at times confusing. In this case we are using the method to not only isolate

264

D
RA
FT

rows and columns, but also to assign them values.2

• The series object has an isin method which behaves similarly to the “in” clause in SQL. Provided
a list of items to match it will return a True/False value depending on if the value is in it or not.
If we want to isolate all the data relating to both Adair and Wright counties then we use it in the
following manner:

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].isin(['Adair', 'Wright'])), 'countyname']
.value_counts())

countyname
Adair 410
Wright 410
Name: count, dtype: int64

A caveat about isin is that will return False when applied to a NaN.

>>> (dfCars
.loc[(dfCars.loc[:, 'tonnage'].isna()), 'tonnage']
.isin(['list', 'of', 'values'])
.value_counts())
tonnage
False 22604
Name: count, dtype: int64

5 Regex Pattern Matching

• Pandas has a number of built-in, useful string matching methods, such as startswith, endswith
and contains, which we mentioned previously.

• For more complex matches, pandas allows you to use what is called Regular Expression (sometimes
called regex).

• The most common way of doing this is by using the accessor str and then applying a regex enabled
method, such as findall or match, though there are others.

• Let’s do a simple example:

>>> dfCars.countyname.str.findall('Adair').head()
0 []
1 []
2 []
3 []
4 [Adair]
Name: countyname, dtype: object

You can see that the object returned a list for row containing the matching substrings. Lets do
something a bit more complex:

2We will learn more about the issues that this arrises when we get to Section 9

265

D
RA
FT

>>> dfCars.countyname.str.upper().str.findall('A').head()
0 [A]
1 [A]
2 [A]
3 [A, A]
4 [A, A]
Name: countyname, dtype: object

Once again, we can see that the all matching strings were returned, which in this case would be two
of the letter “A”.

• Regex is incredibly powerful and incredibly complex. We can do things like case insensitive matching:

>>> dfCars.countyname.str.findall('(?i)a').head()
0 [a]
1 [a]
2 [a]
3 [a, A]
4 [A, a]
Name: countyname, dtype: object

• The following will identify everything that starts with an upper case “A”:

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].str.match('ˆA.*')), 'countyname']
.value_counts()
)

countyname
Adair 410
Appanoose 407
Allamakee 403
Audubon 393
Adams 382
Name: count, dtype: int64

• An even more complex example is to get everything that starts with “A” and ends with “s”, which
will find “Adams”, but not the rest of the counties above.

>>> (dfCars
.loc[(dfCars.loc[:, 'countyname'].str.match('ˆA.*s$')), 'countyname']
.value_counts()
)

countyname
Adams 382
Name: count, dtype: int64

• It makes sense to spend some time (not a lot) reading over some regex and you should use any
opportunity on the homework to play around with it. I’m never going to ask you anything more than
the simple, built-in, stuff on an exam.

• While regex is incredibly powerful for pattern matching purposes, its Achilles heel is that it isn’t a

266

D
RA
FT

strong standard. It is actually a collection of different standards that have significant overlap. The
implication is that it is entirely possible that code that works with “Regex” in one place will not
work in another.

267

D
RA
FT

268

D
RA
FT

Chapter 16

Aggregations

269

D
RA
FT

Contents

1 Introduction to the MTA dataset . 271

2 Simple Aggregations . 271

3 GroupBy Objects . 274

4 Advanced Index / Multiindex . 279

5 If not indexes... 285

6 Indexing with aggregations, a big Gotcha . 286

270

D
RA
FT

1 Introduction to the MTA dataset

• In this section we will using the NY MTA dataset, as we did in the section XX. In order to load this
dataset, use the following command:

>>> dfMTA = pd.read_csv('<FILEPATH>/MTA_Hourly.tdf'
, sep='\t', engine='python', names=['plaza', 'mtadt'

, 'hr', 'direction', 'vehiclesez', 'vehiclescash'])

>>> dfMTA.mtadt = pd.to_datetime(dfMTA.mtadt)

where <FILEPATH> needs to be changed to the appropriate local location.

2 Simple Aggregations

• Pandas provides a number of ways to do simple aggregations – which we define as those over the
entire dataset. The table below shows the available aggregation functions:

Name Description

count Number of non-NaN values
sum Sum of non-NaN values
mean Average of non-NaN values
size Number of rows
median Median of non-NaN values
quantitle(X) X-th quantitle of non-NaN values
std Standard Deviation
var Variance
min Min of non-NaN values
max Max of non-NaN values
prod Product of non-NaN values
first First non-NaN value
last Last non-NaN value
nunique Number of unique values

• For the purposes of this course, we will only focus on those that match the SQL ones: min, max,
mean, sum, count and nunique (essentially count distinct).1

• There are five aggregation methods, which we will term either “Simplifying” or “Equal” depending
on what gets returned relative to the original object they are applied to:

1. Using an aggregation function, such as sum() (Simplifying).

2. Using the agg command, with a string (Simplifying).

3. Using the agg command, with a list of operators (Equal).

4. Using the agg command, with a dictionary of single strings

– On a DataFrame (Simplifying).

– On a Series (Equal).

1For a complete list, check out the list of “Computations / Descriptive Stats” in the pandas documentation, which can be
found here: http://pandas.pydata.org/pandas-docs/stable/reference/frame.html

271

http://pandas.pydata.org/pandas-docs/stable/reference/frame.html

D
RA
FT

5. Using the agg command, with a dictionary of lists. Cannot be done on Series. (Equal).

All of the methods above, save the last one, can be applied to both a DataFrame or a Series. The
most important thing to remember is that the object you get out from the operation is dependent
on both the input type and the operation itself.

• The operations above which say simplifying return a “lower” complexity object then the original
one while those that say equal return an object of “equal” complexity. In terms of complexity order
DataFrames are more complex than Series which are more complex than atomic numbers. So, if you
use the second method above on a Series we would expect it to return a number. While if we use the
third method on a Series we would expect it to return a Series.

• We will first run through each method demonstrating the complexity change. After that we will talk
about the internals of the resulting object.

1. First method: directly applying an aggregation function:

– If we start with a Series and use this simplifying method, we will get a number:

>>> dfMTA.loc[:, 'vehiclescash'].sum()
330901032

– If we start with a DataFrame and use the same, simplifying method, we will get a Series:

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].sum()
vehiclescash 330901032
vehiclesez 1484674162
dtype: int64

2. Second method: Applying an aggregate function using the agg function, but only a single item
via a string. This is again a simplifying method.

>>> type(dfMTA.loc[:, 'vehiclesez'].agg('sum'))
<class 'numpy.int64'>

>>> type(dfMTA.loc[:, ['vehiclesez']].agg('sum'))
<class 'pandas.core.series.Series'>

3. Third method: Applying aggregate function(s) using the agg function, but via a list. This is
an equal method:

>>> type(dfMTA.loc[:, 'vehiclesez'].agg(['sum']))
<class 'pandas.core.series.Series'>

>>> type(dfMTA.loc[:, ['vehiclesez']].agg(['sum']))
<class 'pandas.core.frame.DataFrame'>

4. Fourth method: Applying aggregate function(s) using the agg function, but via a dictionary
where every value in the dictionary is a string.

– In the case of a Series this is an equal method:

272

D
RA
FT

>>> type(dfMTA.loc[:, 'vehiclesez'].agg({'vehiclesez' : 'sum'}))
<class 'pandas.core.series.Series'>

– In the case of DataFrame it is a simplifying method:

>>> type(dfMTA.agg({'vehiclesez' : 'sum'}))
<class 'pandas.core.series.Series'>

5. Fifth method: Applying aggregate function(s) using the agg function, but via a dictionary
where every value in the dictionary is a list. This method only exists on DataFrames, it will
not work on a Series.

>>> type(dfMTA.agg({'vehiclesez' : ['sum']}))
<class 'pandas.core.frame.DataFrame'>

• Similar to applying the aggregation functions directly there are different objects that can be returned
depending on the form of the input. The final form (columns and indexes) of the returned value is
also dependent on the data type and the operation that is completed. When looking at our examples,
there are a finite number of possibilities:

1. Returns a number: This will return an atomic number.

2. Return a Series: Returns a Series, two possible forms:

(a) Index based on aggregate function name

>>> dfMTA.loc[:, 'vehiclesez'].agg(['count','sum'])
count 1165728
sum 1484674162
Name: vehiclesez, dtype: int64

(b) Index based on column name

>>> dfMTA.loc[:, ['vehiclesez', 'vehiclescash']].agg('sum')
vehiclesez 1484674162
vehiclescash 330901032
dtype: int64

3. Return a DataFrame: Returns a DataFrame:

(a) Index based on aggregate function names (therefore columns are column names)

>>> dfMTA.agg({'vehiclesez' : ['count', 'sum'], 'vehiclescash' : 'sum'})
vehiclesez vehiclescash

count 1165728 NaN
sum 1484674162 330901032.0

• Importantly the table in 17.1 contains a list of how our five operators produce output. In this table
the bolded options present what is recommended for both coverage and ease of remembering.

• A very useful aggregation is nunique which counts the number of unique values in a list:

273

D
RA
FT

>>> dfMTA.loc[:, ['plaza','hr']].agg(['nunique'])
plaza hr

nunique 10 24

• Lets answer a quick question about the MTA dataset: What percentage of cars which pass through
a toll place use an EZ pass?

>>> dfMTA.loc[:, 'vehiclesez'].sum()
/ (dfMTA.loc[:, 'vehiclesez'].sum() + dfMTA.loc[:, 'vehiclescash'].sum())

0.8177431410753236

• The command above is relatively straightforward. Each of the three aggregation operations returns
an numpy.int64 object. Traditional addition and division are then applied to get the final answer.

3 GroupBy Objects

• More complex aggregation operations require using the groupby method in pandas.

• The groupby method is a piece of the “split-apply-combine” pattern for handling subsetted data
aggregation. This pattern involves taking a data set and spliting it along a dimension (usually values
within a column or set of columns) applying an operation (such as sum) to similar values within
those groups and then combining the results. Figure 16.1 presents this visually.

Figure 16.1: Split-Apply-Combine pattern

• For new users of pandas, the groupby object can be difficult to understand because it is not a static
data result. Instead, the groupby object only contains information about the split definition – not
the data itself.

• As a first example lets calculate the max vehiclescash by plaza in the dataset:

274

D
RA
FT

>>> dfMTAg = dfMTA.loc[:, ['plaza', 'vehiclescash']].groupby('plaza')

>>> type(dfMTAg)
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

>>> x_1 = dfMTAg.max()

>>> x_1
vehiclescash

plaza
1 1352
2 1040
3 1594
4 1368
5 674
6 844
7 727
8 599
9 1320
11 2116

>>> type(x_1)
<class 'pandas.core.frame.DataFrame'>

The first thing that we do is define a new object dfMTAg which is a groupby object. Similar to
loc we provide it with a similar sized object in order to define the grouping. In this case we have
told groupby to group by plaza.

Secondly, we limit our groupby object to only the vehiclescash column and then use the aggre-
gation function max to calculate the maximum value. Instead of the above, we also could have done
it this way which doesn’t limit the columns calculated:

>>> dfMTAg = dfMTA.groupby('plaza')

>>> dfMTAg.max().loc[:, 'vehiclescash']
plaza
1 1352
2 1040
3 1594
4 1368
5 674
6 844
7 727
8 599
9 1320
11 2116
Name: vehiclescash, dtype: int64

However, this way would calculate the max across all columns before returning the vehiclescash
column, which is much less efficient.

275

D
RA
FT

Note that this has a row index! The result of this calculation is a DataFrame which has an
index equal to the columns chosen via the groupby method. This would be an index composed of
integers.

>>> dfMTA.loc[:, ['plaza', 'vehiclescash']].groupby('plaza').max().index
Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 11], dtype='int64', name='plaza')

• We can combine multiple operations, such as restricting ourselves to only the second plaza. We
either have to do the filtering before we create the GroupBy object or do it after we have calculated
our aggregate functions. Both of the commands below return the same thing, but demonstrate this
difference:

>>> (dfMTA
.loc[(dfMTA.loc[:, 'plaza'] == 2)]
.groupby('plaza')
.max()
.loc[:, 'vehiclescash'])

plaza
2 1040
Name: vehiclescash, dtype: int64

Once again – what is being returned in each? In the first situation we are getting returned a Series
with an index (plaza), but only a single row while the second is returning only a single number, in
this case a numpy integer.

• How about calculating the percentage of cars using EZ pass over each year?

>>> grp = (dfMTA
.loc[:, ['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.assign(yr=dfMTA.loc[:, 'mtadt'].dt.year)
.groupby('yr')
.sum())

>>> grp.loc[:, 'vehiclesez'] / (grp.loc[:, 'vehiclesez'] + grp.loc[:, 'vehiclescash'])
yr
2010 0.757150
2011 0.792285
2012 0.808791
2013 0.828819
2014 0.836587
2015 0.845386
2016 0.851932
2017 0.851355
dtype: float64

This works because the groupby object, after the sum has been applied, is just a standard DataFrame
which we can do whatever expected math we’d like.

• If we want to group by multiple columns at the same time, we put the columns, as a list, into the
groupby object. For example if we want to know the number of cars using the EZ pass which go
through the toll plaza in each direction, we can do the following:

276

D
RA
FT

>>> d_1 = dfMTA.groupby(['plaza', 'direction']).sum(numeric_only=True)

>>> d_1.head()
hr vehiclesez vehiclescash

plaza direction
1 I 707112 71598396 26925764

O 707112 75466906 27433718
2 I 707112 104041531 20567017

O 707112 81520997 17442388
3 I 707112 104486985 32400024

Note the use of the numeric_only argument which is set to True. In versions of pandas before 2.0
this was not required, but now it is and if you do not use it a warning will appear. In general pandas
will attempt the operation on all allowable columns.

Look carefully at the row index and we can see that we now have a multiindex / hierarchal index on
the rows! We will be deep diving into this shortly.

• If we do not want the rows returned as an index we can add the argument as_index and set it to
False in the groupby. Doing this returns the grouping variables as a column, rather than index. It
is roughly equivalent to adding a reset_index to the result of the aggregation:

>>> d_1 = dfMTA.groupby(['plaza', 'direction'], as_index=False).sum(numeric_only=True)

>>> d_1.head()
plaza direction hr vehiclesez vehiclescash

0 1 I 707112 71598396 26925764
1 1 O 707112 75466906 27433718
2 2 I 707112 104041531 20567017
3 2 O 707112 81520997 17442388
4 3 I 707112 104486985 32400024

• Just as with DataFrames and Series there are five methods for doing aggregation and they can either
be “simplifying” or “equal” in terms of complexity. In all cases, however, a DataFrame is returned
and the simple versus equal refers to the shape of the output data and specifically what is returned
in the columns.

1. Using an aggregation command directly (simplifying).

2. Using an aggregation command with a string (simplifying)

3. Using an aggregation command with a list of aggregation functions (equal)

4. Using an aggregation command with a dictionary of single strings (simplifying)

5. Using an aggregation command with a dictionary of lists (equal).

• In all cases the row will be an index based on the contents of the groupby, so if there is a single
item then there will be a single index, if there are multiple items it is a hierarchal/multiindex.

• With groupby the distinction between the simplifying and equal operations is how the columns are
named / handled and there are two possibilities:

1. (Similar to simplifying methods) We get a DataFrame where the index is the variables in the
groupby and the columns have the name of the original columns.

277

D
RA
FT

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg('sum')

>>> d_1
hr vehiclesez

plaza
1 1414224 147065302
2 1414224 185562528
3 1414224 217926485
4 1387176 135142255
5 1414224 46534289
6 1414224 44735980
7 1414224 172800186
8 1412016 106104332
9 1414224 232681943
11 707112 196120862

>>> d_1.columns
Index(['hr', 'vehiclesez'], dtype='object')

This method does not state what aggregation function was used to get the result.

2. (Similar to equal methods) In the more complex case, then the result has a multiindex on the
column:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1
hr vehiclesez
sum max sum max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747
6 1414224 23 44735980 1604
7 1414224 23 172800186 4042
8 1412016 23 106104332 3402
9 1414224 23 232681943 4926
11 707112 23 196120862 8345

>>> d_1.columns
MultiIndex([('hr', 'sum'),

('hr', 'max'),
('vehiclesez', 'sum'),
('vehiclesez', 'max')],
)

278

D
RA
FT

In this case, the object being returned is another DataFrame. A few important notes:

– First, as we saw before the plaza variable has been turned into an index on the rows, as
this is the grouping column.

– The columns though are a total mess. In this case we have what is called a hierarchal or
multi-index on the columns.

– The outer level has the name of the column begin aggregated while the inner level has the
aggregation function.

– We can see this index more clearly by looking at the columns attribute of the DataFrame
which puts a list of tuples as the column information.

• I recommend, when using gropuby to lean into the the list/dictionary method as, while the mul-
tiindex columns aren’t straightforward, it returns the name of the aggregation function that was
used:

>>> d_1 = (dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.groupby(['hr', 'plaza'])
.agg({'vehiclesez' : ['sum', 'max'], 'vehiclescash' : 'max'})
)

>>> d_1.head()
vehiclesez vehiclescash

sum max max
hr plaza
0 1 2535610 1860 900

2 2626113 1948 556
3 3521056 2753 1227
4 1493721 1415 349
5 480565 430 132

4 Advanced Index / Multiindex

• As before we have a DataFrame which has a multi-index on the rows. If we wish to remove this
multi-index and return it to a column we can use reset_index or use the as_index argument in
the groupby as described previously.

279

D
RA
FT

>>> d_1 = (dfMTA
.groupby(['plaza', 'direction'])
.agg({'mtadt' : ['first'], 'vehiclescash' : ['sum']})
)

>>> d_1.reset_index(inplace=True)

>>> d_1.head()
plaza direction mtadt vehiclescash

first sum
0 1 I 2015-11-28 26925764
1 1 O 2015-11-28 27433718
2 2 I 2015-11-28 20567017
3 2 O 2015-11-28 17442388
4 3 I 2015-11-28 32400024

• Before beginning this discussion, I want to preface this by stating that I’m not a big fan of index
based methods in pandas and I think that they have some serious limitations.

• In this section we are going to cover how to reference values (both columns and rows) which have
mulitindexes.

• The loc command can be used to access any index-based method on a row. For example:

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[2, :]
)

vehiclesez sum 185562528
vehiclescash sum 38009405
Name: 2, dtype: int64

In this example the “2” refers to plaza values which are equal to “2” and it gets returned as a Series.

• If we want to return it as a row we can put the selector inside a list:

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[2], :]
)
vehiclesez vehiclescash

sum sum
plaza
2 185562528 38009405

• In some ways this mirrors how we reference columns within loc commands. We can use any slice
based reference, such as the following two examples demonstrate:

280

D
RA
FT

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[2:4, :]
)
vehiclesez vehiclescash

sum sum
plaza
2 185562528 38009405
3 217926485 67000523
4 135142255 21397862

>>> (dfCars
.groupby(['countyname'])
.agg({'annualfee' : ['sum'], 'registrations' : ['count']})
.loc["A":"B", :])

annualfee registrations
sum count

countyname
Adair 25300774.0 410
Adams 12645641.0 382
Allamakee 37068964.0 403
Appanoose 29947777.0 407
Audubon 20501452.0 393

• Note that in the above we cannot put the slice inside a list – this will raise an error:

>>> (dfCars
.groupby(['countyname'])
.agg({'annualfee' : ['sum'], 'registrations' : ['count']})
.loc[["A":"B"], :])

File "<stdin>", line 4
.loc[["A":"B"], :])

ˆ
SyntaxError: invalid syntax

>>> (dfMTA
.groupby('plaza')
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[2:4], :]
)

File "<stdin>", line 4
.loc[[2:4], :])

ˆ
SyntaxError: invalid syntax

281

D
RA
FT

• As a reminder Python is case sensitive in its sorting:

>>> "C" < "D" < "a"
True

• In the case of a multi-index we need to use tuples to access rows. In this first example a Series is
returned.

>>> (dfMTA
.groupby(['plaza', 'hr'])
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[(2,4), :])

vehiclesez sum 1527122
vehiclescash sum 533945
Name: (2, 4), dtype: int64

However, in this case, a DataFrame is returned:

>>> (dfMTA
.groupby(['plaza', 'hr'])
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum']})
.loc[[(2,4)], :])

vehiclesez vehiclescash
sum sum

plaza hr
2 4 1527122 533945

• Personally, I tend to avoid using these systems as I find them to be complex and filled with a ton of
“gotchas”, but we will cover it for completeness so that you have seen it.

• Let’s consider a specific example using the MTA data as we discuss accessing columns and specifying
multiple levels of information.

>>> d_1 = (dfMTA
.groupby(['plaza', 'direction'])
.agg({'vehiclesez' : ['max', 'min'], 'vehiclescash' : ['max', 'min', 'sum']})

)

>>> d_1.head()
vehiclesez vehiclescash

max min max min sum
plaza direction
1 I 2962 0 1232 0 26925764

O 3066 0 1352 0 27433718
2 I 4307 0 1040 0 20567017

O 3255 0 927 0 17442388
3 I 4572 0 1575 0 32400024

• The DataFrame above has an index (plaza and direction) and five columns associated with the
aggregations. There are 19 total rows in the DataFrame (the 11th plaza only has Inbound activity).
Both the rows and columns have multiindexes.

• To reference objects we can use tuples with our loc:

282

D
RA
FT

>>> d_1.loc[:, ('vehiclescash', 'max')].head()
plaza direction
1 I 1232

O 1352
2 I 1040

O 927
3 I 1575
Name: (vehiclescash, max), dtype: int64

>>> d_1.loc[:, [('vehiclescash', 'max')]].head()
vehiclescash

max
plaza direction
1 I 1232

O 1352
2 I 1040

O 927
3 I 1575

>>> d_1.loc[(1,'I'), :]
vehiclesez max 2962

min 0
vehiclescash max 1232

min 0
sum 26925764

Name: (1, I), dtype: int64

>>> type(d_1.loc[[(1,'I')], :])
<class 'pandas.core.frame.DataFrame'>

>>> d_1.loc[(1,'I'), ('vehiclescash', 'max')]
1232

Taking a look at the three examples above, we see that by replacing our traditional column name
with a tuple we can reference single objects within our DataFrame.

• The first example above is straightforward and behaves as expected. We pass in a colon to return all
rows and then pass in a tuple to identify the columns of interest. This returns a SERIES.

• The second example passes the tuple in as a list and (surprise, surprise), this returns the same data
in the previous example, but this time as a DataFrame.

• The third example is similar, expect we use this select rows, rather than columns. HOWEVER, in this
case, we find that the object returned is not a DataFrame, but instead a Series! This is just because
we are selecting a single row, which we have completely specified from the original DataFrame. Note
that this can happen when selecting rows based off of an index even without using tuples, as seen
below.2

>>> type(dfMTA.iloc[0])
<class 'pandas.core.series.Series'>

2Let’s call this gotcha #1

283

D
RA
FT

• The fourth example applies the same list logic as with columns. In this case, instead of returning a
Series, it returns a DataFrame containing the same data as the previous series.

• The fifth example has us selecting both a row and column based on tuples and it returns single value.

• To reference multiple values inside the tuple, we use the command slice(None) to create a slice
which contains nothing. For example:

>>> d_1.loc[: , ('vehiclesez', slice(None))].head()
vehiclesez

max min
plaza direction
1 I 2962 0

O 3066 0
2 I 4307 0

O 3255 0
3 I 4572 0

Or:

>>> d_1.loc[(slice(None), 'I'), (slice(None), 'max')].head()
vehiclesez vehiclescash

max max
plaza direction
1 I 2962 1232
2 I 4307 1040
3 I 4572 1575
4 I 3640 1368
5 I 1675 674

In this second example we use the tuples to return all the max values in the inbound direction.

• What if we want to select a few different values in a tuple, rather than a single one? We can use a
list, which get interpreted as a filter.

>>> d_1.loc[([1,2], 'I'), (slice(None), 'max')]
vehiclesez vehiclescash

max max
plaza direction
1 I 2962 1232
2 I 4307 1040

The command above uses a list to select either plaza #1 or plaza #2.

• Note that this tuple logic is only when using multiindexes. If you are accessing data based on the
contents of the data (and not the index), then the traditional logic we used with loc is what you
want to use.

• I find the tuple / slice(None) logic to be pretty discordant with how I use pandas. Because of
this my normal pattern is to avoid using indexes unless there is an operation that requires them. In
that case I then set_index do the operation and then reset_index in order to remove the index.
It’s too confusing for my small mind.

284

D
RA
FT

5 If not indexes...

• I commonly choose to remove the indexes on columns and usually do it via one of the methods below:

1. Drop a “level”: This method removes one of the levels (usually the outer one). It’s easy to
do, but the downside is that the resulting columns may have repeating names. The command
to do this is the droplevel method of the multi-index and then reassign those values back to
the columns:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = d_1.columns.droplevel()

>>> d_1.head()
sum max sum max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747

The droplevel method, without any parameters, drops the outermost level and, in this case,
the resulting set of columns have repeating names. If we wish to change those repeated names
the best way to do this is by reassigning them via the columns parameter.3

>>> d_1.columns = ['sum_hr', 'max_hr', 'sum_vec', 'max_vec']

2. Concat ’em: The following piece of code is something that I use frequently in order to remove
the multi columns and replace them with a concatenated string.

3Since the columns have repeating names, the rename method does not work.

285

D
RA
FT

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = ['_'.join(col).strip() for col
in d_1.columns.values]

>>> d_1
hr_sum hr_max vehiclesez_sum vehiclesez_max

plaza
1 1414224 23 147065302 3066
2 1414224 23 185562528 4307
3 1414224 23 217926485 4572
4 1387176 23 135142255 3640
5 1414224 23 46534289 1747
6 1414224 23 44735980 1604
7 1414224 23 172800186 4042
8 1412016 23 106104332 3402
9 1414224 23 232681943 4926
11 707112 23 196120862 8345

3. Blow it all up: This is the most common solution I use when doing EDA. In this solution I
simply keep the columns I’m interested in and rename the rest by setting the column attribute,
similar to what we did after the droplevel command earlier:

>>> d_1 = dfMTA.loc[:, ['plaza', 'hr', 'vehiclesez']]
.groupby('plaza').agg(['sum', 'max'])

>>> d_1.columns = ['sum_hr', 'max_hr', 'sum_vec', 'max_vec']

6 Indexing with aggregations, a big Gotcha

• When using groupby objects it’s important to pay attention to what you are grouping on and,
specifically, it is an index or not.

• Frequently we wish the output of a groupby to not create an index, but instead just return a
standard column. To do this, we use the as_index=False option.

• This function is pretty handy because it “seems” to allows us to move data back and forth between
index to column when we do a groupby.

• HOWEVER, there is a big, big, gotcha with this! That gotcha is that even if you set as_index=False
it will not pull data from an index to a column.

• Consider the following example:

286

D
RA
FT

>>> d_1 = (dfMTA
.loc[:, ['mtadt', 'vehiclesez']]
.groupby('mtadt', as_index=False)
.sum())

>>> d_1.head()
mtadt vehiclesez

0 2010-01-01 316187
1 2010-01-02 380746
2 2010-01-03 359420
3 2010-01-04 494168
4 2010-01-05 518537

>>> d_2 = (dfMTA
.loc[:, ['mtadt', 'vehiclesez']]
.set_index(['mtadt'])
.groupby('mtadt', as_index=False)
.sum())

>>> d_2.head()
vehiclesez

0 316187
1 380746
2 359420
3 494168
4 518537

In both cases we have set as_index=False, but in the second case, when the column being grouped
is a part of the index we lose the mtadt ! As stated, this is because when the column is originally an
index, the as_index method will not pull the column out of the index, instead it will ignore it.

• This can also happen when using as_index=False and then using the column in the aggregation.
In the example below we have added as_index=False and then aggregated by group by column.
By doing this, plaza only appears once which, in this case is for the aggregation function and not
from a column generated from an index.

>>> (dfMTA
.groupby('plaza', as_index=False)
.agg({'vehiclesez' : ['sum'], 'vehiclescash' : ['sum'], 'plaza' : 'count'})
)

vehiclesez vehiclescash plaza
sum sum count

0 147065302 54359482 122976
1 185562528 38009405 122976
2 217926485 67000523 122976
3 135142255 21397862 120624
4 46534289 7798630 122976
5 44735980 9676265 122976
6 172800186 26578805 122976
7 106104332 14368223 122784
8 232681943 53530379 122976
9 196120862 38181458 61488

287

D
RA
FT

288

D
RA
FT

Chapter 17

Joins

289

D
RA
FT

Contents

1 Helpful Table / Review . 291

2 Merging data in Pandas . 292

3 Complex Join Conditions . 294

4 Stacking Data . 294

5 Lags and Leads . 296

6 Apply, map and applymap: Advanced Transformations 297

290

D
RA
FT

1 Helpful Table / Review

• When we started working in Pandas, we said one of the difficult parts was keeping track of what was
being returned by an object. To help with this process, I’ve created the following, Table 17.1, which
maps structure and operation to outcome.

• I personally don’t have all these memorized, only a few which allow me to quickly deal with problems.

Data Operator Example Result Detail

Series

Aggregation .sum() Number #

With .agg .agg(’sum’) Number #

With .agg in list .agg([’sum’]) Series Row Index Agg

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) Series Row Index Col Name

With .agg in dict
(lists)

.agg([’sum’, ’count’]) N/A Operation not allowed

df

Aggregation .sum() Series Row Index Col Name

With .agg .agg(’sum’) Series Row Index Col Name

With .agg in list .agg([’sum’]) df Row Index Agg

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) Series Row Index Col Name

With .agg in
dict (list)

.agg({’col1’: [’sum’]}) df Row Index Agg, possible
Nulls

groupby

Aggregation .sum() df Cols single-level idx

With .agg .agg(’sum’) df Cols single-level idx

With .agg in list .agg([’sum’]) df Cols multiindex

With .agg in dict
(string)

.agg({’col1’ : ’sum’}) df Cols single-level idx

With .agg in
dict (list)

.agg({’col1’: [’sum’]}) df Cols multiindex

Table 17.1: Pandas common operations and their results. Bolded are recommended forms.

291

D
RA
FT

2 Merging data in Pandas

• To merge DataFrames in Pandas we use the pd.merge command.

• The basic structure of merging is the same as in SQL. We need to identify (a) which column(s) we
wish to merge on and (b) what type of merge we wish to do.

• There is one wrench that gets thrown into this, however, which is that Pandas requires you to identify
if the column(s) you are merging on are part of an index or not.

• In terms of the type of merges, they are similar to SQL: left, inner, outer, right and cross are all done
the same.

• Let’s start with merging two datasets without an index, as demonstrated by the following example:

>>> class1 = pd.DataFrame({"sname": ['John', 'Jim', 'Kyle']
, "grade": ['A', 'A', 'C']})

>>> class2 = pd.DataFrame({"sname": ['John', 'Jim', 'Ashley']
, "grade": ['A', 'B', 'F']})

>>> pd.merge(class1, class2, on='sname', how='left')
sname grade_x grade_y

0 John A A
1 Jim A B
2 Kyle C NaN

• We call the function using pd.merge and then provide it the DataFrames being merged. In this
case we provided two DataFrames, class1 and class2. The first DataFrame is considered the “left”
DataFrame and the second is considered the “right” DataFrame. We can specify “left” and “right” as
parameters if we want to be pedantic pd.merge(left=class1, right=class2, on='sname', how='left')

• The merge type, how, accepts any standard join: left, inner, outer, right and cross as a string.

• We use the on parameter to state which column(s) we are merging on. If the columns have the same
name then we simply put them in the on parameter within the method. If we have more than one
column to merge on, we can specify the columns in a list:

>>> pd.merge(class1, class2, on=['sname', 'grade'], how='inner')
sname grade

0 John A

• If the columns are named different things, then we use the “left on” and “right on” operators to do
the merge:

>>> class1T = class1.rename(columns={ 'sname' : 's2'})

>>> pd.merge(class1T, class2, left_on='s2', right_on='sname', how = 'left')
s2 grade_x sname grade_y

0 John A John A
1 Jim A Jim B
2 Kyle C NaN NaN

292

D
RA
FT

• One interesting thing that pandas can do is create an indicator which tells you how the row came
into the resulting dataset, called _merge, as in the example below:

>>> pd.merge(class1, class2, on='sname', how='outer', indicator=True)
sname grade_x grade_y _merge

0 John A A both
1 Jim A B both
2 Kyle C NaN left_only
3 Ashley NaN F right_only

• Instead of calling merge directly from the pandas module, you can also call it as a method from a
DataFrame. When doing this, the calling DataFrame is considered the left DataFrame:

>>> class1.merge(class2, how='left', on='sname')
sname grade_x grade_y

0 John A A
1 Jim A B
2 Kyle C NaN

I prefer to call pd.merge rather than using the above notation. I find it a bit cleaner.

• To do a cross-join in pandas (only available in versions greater than 1.5), you state the merge type
as cross and do not put in any on condition.

>>> pd.merge(class1, class2, how='cross')
sname_x grade_x sname_y grade_y

0 John A John A
1 John A Jim B
2 John A Ashley F
3 Jim A John A
4 Jim A Jim B
5 Jim A Ashley F
6 Kyle C John A
7 Kyle C Jim B
8 Kyle C Ashley F

• Index Merging: In all of the examples above the data which was being merged on was stored as
a value and was not a part of the index. If the column being merged on is in an index in one of
the DataFrames then instead of using left on and right on, the parameters left index and right index
need to be used, where a boolean True/False is given in the function. Consider the following example:

>>> class1idx = class1.set_index('sname')

>>> pd.merge(class1idx, class2, left_index=True, right_on = 'sname', how='left')
grade_x sname grade_y

0.0 A John A
1.0 A Jim B
NaN C Kyle NaN

The first command in the above example changes the column “sname” in class1 to an index.

• BIG THING: When merging data with pandas Nulls will match! This is unlike SQL which has a

293

D
RA
FT

consistent treatment of Null values. Per the pandas documentation:

Figure 17.1: Null treatment in merges

3 Complex Join Conditions

• In all of the above examples we had simple equality joins where we wanted to match one column to
its exact match within another column in a different DataFrame.

• However, there are many situations where a merge needs to be completed based on a more complex
join condition, such as an inequality (≥).

• Pandas, sadly, doesn’t provide an easy method to implement non-equality join conditions. This
means that when we join, we must either create a cross join style merge and then remove those rows
that fail our actual join condition or use an equality join followed by the same filtering method.

• Let’s return to our class tables and say that we want to join rows that have names that don’t match.
For example, I wish to create a dataset which allows me to compare each person against everyone
else in the same class:

>>> d_1 = pd.merge(class1, class1, how='cross')

>>> d_1 = d_1.loc[(d_1.loc[:, 'sname_x'] != d_1.loc[:, 'sname_y']), :]

>>> d_1
sname_x grade_x sname_y grade_y

1 John A Jim A
2 John A Kyle C
3 Jim A John A
5 Jim A Kyle C
6 Kyle C John A
7 Kyle C Jim A

In this case we implemented our more complex join condition after we did a cross-join style merge.

4 Stacking Data

• If we have a dataset and wish to stack or append it to another data set (similar to SQL’s UNION
or UNION ALL) we can use the “concat” operator. This operator takes a DataFrame and then puts
multiple copies of the data back-to-back in a specified manner.

• Let’s look at the following example:

294

D
RA
FT

>>> pd.concat([class1,class2])
sname grade

0 John A
1 Jim A
2 Kyle C
0 John A
1 Jim B
2 Ashley F

The concat function, which is in the main pandas library, like merge, takes in data objects and then
returns those data objects combined. There are two primary ways that concat is used, the first is
above, in which case we wish to stack vertically.

• The concat method can also stack data frames horizontally. For example:

>>> pd.concat([class1, class2], axis=1)
sname grade sname grade

0 John A John A
1 Jim A Jim B
2 Kyle C Ashley F

In the above example, the parameter “axis=1” was added. This parameter tells the concat method
to stack the data along columns, rather than along rows. The default behavior is, unsurprisingly,
“axis=0” which is the behavior in the previous example.

• A BIG difference between how pandas does concatenation and how relational databases do concate-
nation is that the columns in pandas are put in name-alignment. In other words, only columns
which have the same name are matched together. Consider the following example:

>>> print("## Note that this is just class2 with a new column name and a new order")
Note that this is just class2 with a new column name and a new order

>>> class3 = pd.DataFrame({"grade2": ['A', 'B', 'F']
, "sname": ['John', 'Jim', 'Ashley'] })

>>> pd.concat([class1, class3])
sname grade grade2

0 John A NaN
1 Jim A NaN
2 Kyle C NaN
0 John NaN A
1 Jim NaN B
2 Ashley NaN F

In the example above we see that grade is filled in with “NaN” values for data which was taken from
the second DataFrame while grade2 contains “NaN” values for those observations taken from the
first DataFrame.

Note also that the columns class1 and class3 were not in the same order and the function aligned
those columns to those with similar names. In other words, this only appends columns which have
the same name.

• One parameter of interest is the parameter “join” which defines which columns to return. If join is
set to “inner” then only those columns in both DataFrames are included in the returned DataFrame

295

D
RA
FT

while if “outer” is set, all columns are returned. Consider the following examples:

>>> class4 = class2.copy()

>>> class4.loc[:, 'test'] = 1

>>> pd.concat([class2, class4], join='inner')
sname grade

0 John A
1 Jim B
2 Ashley F
0 John A
1 Jim B
2 Ashley F

>>> pd.concat([class2, class4], join='outer')
sname grade test

0 John A NaN
1 Jim B NaN
2 Ashley F NaN
0 John A 1.0
1 Jim B 1.0
2 Ashley F 1.0

5 Lags and Leads

• A common operation with a DataFrame is to get the previous of next value within a Series. Generally
called “lag” and “lead”, these operations are done with the shift operator, which works on both
Series and DataFrames.

• This operator takes in a number which represents how far back (or forward) in the DataFrame to
step to get a value.

• Looking at the MTA data set we can use this information to get the previous hour’s information:

>>> dfMTAC = dfMTA.loc[(dfMTA.loc[:, 'plaza'] == 1) & (dfMTA.loc[:, 'direction'] == 'I'), :]

>>> dfMTAC = dfMTAC.sort_values(['mtadt', 'hr'])

>>> dfMTAC.loc[:, 'pvsCash'] = dfMTAC.loc[:, 'vehiclescash'].shift(1)

>>> dfMTAC.loc[:, 'nxtCash'] = dfMTAC.loc[:, 'vehiclescash'].shift(-1)

>>> dfMTAC.head()
plaza mtadt hr ... vehiclescash pvsCash nxtCash

103440 1 2010-01-01 0 ... 474 NaN 717.0
103442 1 2010-01-01 1 ... 717 474.0 664.0
103444 1 2010-01-01 2 ... 664 717.0 595.0
103446 1 2010-01-01 3 ... 595 664.0 547.0
103448 1 2010-01-01 4 ... 547 595.0 450.0

[5 rows x 8 columns]

• In this case the “1” argument in the shift parameter tells Pandas to shift the dataset one row in
the forward (or down) direction. In other words, positive values generate lags and negative values

296

D
RA
FT

generate leads.

• The order of the rows is set by the sort_values command previous in the script. Once the order
is set, the shift command steps back a row and the method with the loc then sets the values.

• The shift operator can also be used in conjunctions with a groupby in order to do lags and leads
within a particular group. For example:

>>> dfMTAC = dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]

>>> dfMTAC = dfMTAC.sort_values(['plaza', 'mtadt', 'hr'])

>>> dfMTAgb = dfMTAC.groupby('plaza')

>>> dfMTAC.loc[:, 'pvsCash'] = dfMTAgb.shift(1).loc[:, 'vehiclescash']

>>> dfMTAC.loc[:, 'nxtCash'] = dfMTAgb.shift(-1).loc[:, 'vehiclescash']

>>> dfMTAC.iloc[61487:61490, :]
plaza mtadt hr ... vehiclescash pvsCash nxtCash

1163398 1 2017-01-07 23 ... 191 194.0 NaN
206928 2 2010-01-01 0 ... 290 NaN 363.0
206930 2 2010-01-01 1 ... 363 290.0 346.0

[3 rows x 8 columns]

• Note that we created two objects – the copy and one using a groupby in order to do this operation.
The groupby facilitates the segmentation, but to do the assignment we then rely on returning the
Series to the copied DataFrame. Since we haven’t sorted the data between these operations we can
be assured that the rows are still aligned.

• Shift can also work on an entire DataFrame:

>>> dfMTAC = (dfMTA
.loc[dfMTA.loc[:, 'direction']=='I', ['plaza', 'mtadt', 'hr', 'vehiclesez', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
)

>>> dfMTAC.shift(1).head()
plaza mtadt hr vehiclesez vehiclescash

103440 NaN NaT NaN NaN NaN
103442 1.0 2010-01-01 0.0 415.0 474.0
103444 1.0 2010-01-01 1.0 702.0 717.0
103446 1.0 2010-01-01 2.0 559.0 664.0
103448 1.0 2010-01-01 3.0 480.0 595.0

6 Apply, map and applymap: Advanced Transformations

• In this section we consider three advanced methods for transforming columns: map, apply and
applymap. These functions allow you to take a DataFrame or Series and apply an arbitrary function
to it.

• The first of these we will consider is applymap which applies a function to a DataFrame element by
element. Note that this function only works on entire DataFrames and not on series:

297

D
RA
FT

>>> from math import log10

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head().applymap(log10)
vehiclescash vehiclesez

0 2.311754 2.678518
1 2.401401 2.686636
2 2.232996 2.544068
3 2.260071 2.487138
4 2.123852 2.447158

• I rarely use the function applymap since it applies a function to every value in a DataFrame, which
isn’t that helpful when you have mixed types within a DataFrame and that function does not already
exist.

• When an alternative exists, applymap is generally slower since it applies operations element-by-
element rather than vectorizing them in a multi-threaded manner. The two code snippets below do
the same operation, but the second is faster (and easier to read).

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head().applymap(lambda x: x**2)
vehiclescash vehiclesez

0 42025 227529
1 63504 236196
2 29241 122500
3 33124 94249
4 17689 78400

>>> dfMTA.loc[:, ['vehiclescash', 'vehiclesez']].head() ** 2
vehiclescash vehiclesez

0 42025 227529
1 63504 236196
2 29241 122500
3 33124 94249
4 17689 78400

• Note also that you pass it a function which takes in a single argument (in the case above this was
taking log base 10). If you need to pass in a function which takes in multiple arguments then you
will need to use a lambda function.

• The function map is the same thing as applymap but now on a Series, not on a DataFrame. Once
again, it applies an element-by-element operation on a series.

>>> dfMTA.loc[:, 'vehiclescash'].head().map(lambda x: x ** 2)
0 42025
1 63504
2 29241
3 33124
4 17689
Name: vehiclescash, dtype: int64

• One useful application of map is that you can pass it a dictionary and it will apply it as a map to
that Series:

298

D
RA
FT

>>> TransDict = {1 : 'Robert F. Kennedy Bridge Bronx Plaza (TBX)'
, 2 : 'Robert F. Kennedy Bridge Manhattan Plaza (TBM)'
, 3 : 'Bronx-Whitestone Bridge (BWB)'
, 4 : 'Henry Hudson Bridge (HHB)'
, 5 : 'Marine Parkway-Gil Hodges Memorial Bridge (MPB)'
, 6 : 'Cross Bay Veterans Memorial Bridge (CBB)'
, 7 : 'Queens Midtown Tunnel (QMT)'
, 8 : 'Brooklyn-Battery Tunnel (BBT)'
, 9 : 'Throgs Neck Bridge (TNB)'
, 11 : 'Verrazano-Narrows Bridge (VNB)'}

>>> dfMTA.loc[:, 'plaza'].drop_duplicates().map(TransDict).reset_index(drop=True)
0 Robert F. Kennedy Bridge Bronx Plaza (TBX)
1 Robert F. Kennedy Bridge Manhattan Plaza (TBM)
2 Bronx-Whitestone Bridge (BWB)
3 Henry Hudson Bridge (HHB)
4 Marine Parkway-Gil Hodges Memorial Bridge (MPB)
5 Cross Bay Veterans Memorial Bridge (CBB)
6 Queens Midtown Tunnel (QMT)
7 Brooklyn-Battery Tunnel (BBT)
8 Throgs Neck Bridge (TNB)
9 Verrazano-Narrows Bridge (VNB)
Name: plaza, dtype: object

• The last of the complex transforms is apply which has both DataFrame and Series methods.

• The reason that apply is the most complex is that it is the most general on how it takes in a data
as well as what it returns. Consider the following simple examples:

>>> d_1 = pd.DataFrame({'A' : [1,2,3], 'B': [4,5,6]})

>>> d_1.apply(np.sum, axis=1)
0 5
1 7
2 9
dtype: int64

>>> d_1.apply(np.sum, axis=0)
A 6
B 15
dtype: int64

In these examples a function is passed to apply which takes in a list and returns a scalar, which
is then returned. The axis argument tells tells apply in which direction the data is to be passed.
When axis is equal to 1 then rows are passed to the function while if axis is equal to zero, then
columns are passed.

• Importantly, apply can return complex objects:

299

D
RA
FT

>>> l_1 = lambda x: pd.Series([sum(x), len(x)])

>>> d_1.apply(l_1, axis=1)
0 1

0 5 2
1 7 2
2 9 2

>>> d_1.apply(l_1, axis=0)
A B

0 6 15
1 3 3

The lambda function t returns a Series which is then stacked into a DataFrame by the apply
method.

• We can also define more complex functions which are specific to the DataFrame in question:

>>> def f_1(x): return abs(x.loc['vehiclesez'] - x.loc['vehiclescash']) ** 2

>>> dfMTA.head().apply(f_1, axis=1)
0 73984
1 54756
2 32041
3 15625
4 21609
dtype: int64

This function does something specific to this DataFrame on a row-by-row basis.

• Note that all three of these methods create a new object and that it must be assigned back to the
DataFrame if you want to access it later:

>>> dfMTAC = dfMTA.copy()

>>> def f_2(x): return abs(x.loc['vehiclesez'] - x.loc['vehiclescash']) ** 2

>>> dfMTAC.loc[:, 'newcol'] = dfMTAC.apply(f_2, axis=1)

>>> dfMTAC.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2015-11-28 0 I 477 205 73984
1 1 2015-11-28 0 O 486 252 54756
2 1 2015-11-28 1 I 350 171 32041
3 1 2015-11-28 1 O 307 182 15625
4 1 2015-11-28 2 I 280 133 21609

300

D
RA
FT

Chapter 18

Window Functions

301

D
RA
FT

Contents

1 Window Functions in Pandas . 303

2 Some gotchas . 307

3 Reshaping Data: Transpose, Stack and Unstack . 308

4 A Bunch of stuff to clean up . 312

5 Combining with the original DataFrame . 312

6 Moving the Window . 316

7 Pivot / Melt . 316

302

D
RA
FT

1 Window Functions in Pandas

• Pandas has two functions, expanding and rolling which do SQL style windows aggregations,
using a syntax similar to groupby.

• An important difference between how Pandas and SQL implement window functions is how sorting
is done. In SQL you never assume that rows have any order and always apply an ORDER BY clause
to sort the data. In Pandas, the sort order is set by operation and you assume that it hasn’t change
when additional operators are applied. In other words, when we user window functions in SQL we
set the row order via the window function but, when we use Pandas, we sort the data ahead of time
and assume that the data retains that order.

• The difference between the rolling and expanding operators is the length of the window under
consideration. The expanding operator has a window which increases to the start of the DataFrame
while the rolling operator goes a fixed number of rows behind.

• The rolling method has one required parameter, which is the window length. This is similar to
setting the ROWS BETWEEN operator in SQL.

• The rolling method has a fixed window length and, by default, sets all rows which have less data
than the window length to NaN.1

• Let’s consider a simple example to show how this works. We will start by building a simple DataFrame
(df), which has two columns.

>>> d_1 = pd.DataFrame({'c1': [0, 1, 2, np.nan, 4], 'c2' : [0,1,2,3,4]})

>>> d_1
c1 c2

0 0.0 0
1 1.0 1
2 2.0 2
3 NaN 3
4 4.0 4

• Just like groupby we use the rolling operator on the DataFrame. In this case we are going to
choose a window length of two to create a rolling object:

>>> x_1 = d_1.rolling(2)

>>> type(x_1)
<class 'pandas.core.window.rolling.Rolling'>

• And, just like groupby we take this object and apply aggregations to it, using the syntax we have
learned before.

Apply function directly:

1This is different than SQL which fills in NULL values when the window length is less than the number of rows.

303

D
RA
FT

>>> x_1.mean()
c1 c2

0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

agg with list:

>>> x_1.agg('mean')
c1 c2

0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

agg with dict:

>>> x_1.agg({'c1' : ['mean'], 'c2' : ['mean']})
c1 c2

mean mean
0 NaN NaN
1 0.5 0.5
2 1.5 1.5
3 NaN 2.5
4 NaN 3.5

Looking at the above, in the first row, both columns have returned NaN. This is because we have set
the window size to 2 and, by default, this means that any window of length less than two is set to
NaN. We also see that there are two NaN’s in the columns c1. This is because NaN added to any
other number returns NaN.

• We can change the number of observations required to get a response using the min_periods
argument:

>>> d_1.rolling(2, min_periods=1).mean()
c1 c2

0 0.0 0.0
1 0.5 0.5
2 1.5 1.5
3 2.0 2.5
4 4.0 3.5

Note that this changes the result considerably. Since the first row now has a single observation it
no longer returns NaN. Surprisingly, even the row with index 3 now has a value since there is one
non-NaN value!

• To partition our data, we mix our rolling command with the groupby operator. In the following
command we are going to only look at inbound traffic for the sake of simplicity.

304

D
RA
FT

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza
1 103440 NaN NaN

103442 NaN NaN
103444 1855.0 558.666667
103446 1976.0 580.333333
103448 1806.0 479.000000

• Once again, remember that the sort order is set via code and should not be assumed.

• Pandas accumulates distinct values together – even if they are not connected within the original
DataFrame. In the second example above, despite the plaza being after the hour column in the sort
order this does not mean that multiple plazas are generated per hour. Since the groupby is on plaza
this means that all similar values, independent of their row order are placed together.

• Take a look at what is returned in the example above and, specifically, what is being returned as the
index. Since there was no index in the DataFrame before rolling was applied, the command keeps
the original RangeIndex that was in the DataFrame! This is so that we could merge it back to the
DataFrame before the rolling command.

• Alternatively, we could have moved our identifying columns into an index before specifying the
rolling command so that we could merge it back onto the original DataFrame:

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza plaza mtadt hr
1 1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

which would yield two plaza columns. However, just turning off as_index in the groupby won’t
change this issue:

305

D
RA
FT

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza plaza mtadt hr
1 1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

Instead you need to have your index set to the returning variables you care about. Note that the
as_index has no effect on what gets returned in this situation, as the rolling command will put
plaza into the index no matter what.

>>> res = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), :]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['mtadt', 'hr'])
.groupby('plaza', as_index=False)
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'}))

>>> res.head()
vehiclescash vehiclesez

plaza mtadt hr
1 2010-01-01 0 NaN NaN

1 NaN NaN
2 1855.0 558.666667
3 1976.0 580.333333
4 1806.0 479.000000

• So what have we learned:

– The rolling command will take whatever is in the index and pass it through to the resultant
DataFrame.

– The rolling command will add whatever groupby column appears as an index, no matter
what options you put in the groupby function.

– Make sure that your DataFrame is sorted before applying the rolling operation.

• The other command used when doing window functions is the expanding operator. This operator
calculates the aggregation back to the beginning of the frame in question, rather than based on a
fixed window size.

• For example, if we want to return a running sum we could do the following and, we could verify that
the changeover happens correctly:

306

D
RA
FT

>>> d_1 = (dfMTA
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza')
.expanding().agg({'vehiclesez' : 'sum'})
)

>>> d_1.iloc[122975:122980]
vehiclesez

plaza
1 1163399 147065302.0
2 206928 457.0

206929 986.0
206930 1526.0
206931 2273.0

2 Some gotchas

Adding Back

• These types of functions are very easy to use in ways that cause problems.

• The biggest reason for this is that to run these commands the indexes have to be set just right.

• After running these commands we then want to put this data back into our original DataFrame, but
this means then either changing the original DataFrame to conform with the result of our operation
OR changing the result of our operation so that it conforms to our original DataFrame.

• In either case it is easy to end up in a place where functions do not return an error – but also aren’t
doing exactly what you want. The commands below are one way that we can take a DataFrame, do
our aggregation functions and then add them back to our original DataFrame. Note the complexity
required to make sure that the indexes align properly.

307

D
RA
FT

>>> d_1 = (dfMTA
.set_index(['plaza', 'mtadt', 'hr', 'direction'])

)

>>> d_2 = (d_1
.reset_index(['plaza', 'direction'])
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby(['plaza', 'direction'])
.rolling(3)
.agg({'vehiclescash' : 'sum', 'vehiclesez' : 'mean'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr', 'direction'])
).copy()

>>> d_1.loc[:, 'rcash'] = d_2.loc[:, 'vehiclescash']

>>> d_1.loc[:, 'rez'] = d_2.loc[:, 'vehiclesez']

>>> d_1.head()
vehiclesez vehiclescash rcash rez

plaza mtadt hr direction
1 2015-11-28 0 I 477 205 817.0 653.333333

O 486 252 998.0 694.333333
1 I 350 171 646.0 499.666667

O 307 182 797.0 509.333333
2 I 280 133 509.0 369.000000

Offsetting

• There are no options within rolling or expanding to offset the data in some way.

• To do this we have to use the shift operator.

3 Reshaping Data: Transpose, Stack and Unstack

• In this section we look at the three commonly used commands for reshaping data between wide- and
long-formats: transpose, stack and unstack.

• These operations strongly rely on indexes on both rows and columns. My common workflow with
these operations is:

1. Realize that I need to reshape the data.

2. Figure out what index I need.

3. Create index.

4. Reshape data.

5. Drop the index.

I don’t use indexes that much, preferring to leave the data “raw”, rather than in named index columns.
Because of this pattern, when I do need to reshape I have to define the appropriate indexes. This is
a bit backward, but my preference is to avoid the complexity of indexes.

308

D
RA
FT

• In the simplest case to reshape data we can simply “transpose” it using the operator T. Let’s look
at the following example:

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& (dfMTA.loc[:, 'direction'] == 'I')
& (dfMTA.loc[:, 'plaza']==1),
['hr', 'vehiclesez', 'vehiclescash']]
.reset_index(drop=True))

>>> d_1.head()
hr vehiclesez vehiclescash

0 0 669 315
1 1 1085 426
2 2 922 426
3 3 767 450
4 4 724 429

We have three columns of data and we wish to make it wide. There are two options for this data:
one is that we have “hr” as a column index or we just have “hr” as a row. We can do either by
choosing to set an index or not:

1. Pure Transpose: Swap everything.

>>> d_1.T
0 1 2 3 4 5 ... 18 19 20 21 22 23

hr 0 1 2 3 4 5 ... 18 19 20 21 22 23
vehiclesez 669 1085 922 767 724 616 ... 1098 1107 971 844 783 626
vehiclescash 315 426 426 450 429 331 ... 489 482 378 369 344 283

[3 rows x 24 columns]

2. Transpose with an Index: Create a column index based on hour.

>>> d_1.set_index('hr').T
hr 0 1 2 3 4 5 ... 18 19 20 21 22 23
vehiclesez 669 1085 922 767 724 616 ... 1098 1107 971 844 783 626
vehiclescash 315 426 426 450 429 331 ... 489 482 378 369 344 283

[2 rows x 24 columns]

Looking at the result there are only two rows this time since “hr” has been turned into a column
index.

• To swap the data back to the original form use the T command again.

• Transpose works when you wish to reshape the entire DataFrame. Most of the time, however, that
operation is too severe and you only wish to make some of the information change shape.

• The first command stack takes data which is “wide” and makes it long while unstack returns the
data to its wide format. Let’s look at an example, using the MTA data:

309

D
RA
FT

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& (dfMTA.loc[:, 'direction'] == 'I')
& ((dfMTA.loc[:, 'plaza']==1) | (dfMTA.loc[:, 'plaza'] == 2)),
['plaza', 'hr', 'vehiclesez', 'vehiclescash']]
.reset_index(drop=True)
.set_index(['plaza', 'hr'])
.unstack('plaza')
)

>>> d_1.head()
vehiclesez vehiclescash

plaza 1 2 1 2
hr
0 669 554 315 160
1 1085 799 426 259
2 922 670 426 320
3 767 518 450 187
4 724 423 429 180

• We created a dataset with four columns: plaza, hr, vehiclesez and vehiclescash. We then use unstack
to take this “long” data and turn it “wide” along the plaza dimension. The resulting DataFrame will
have 24 rows and four columns.

• We can undo this command by using stack:

>>> d_1.stack('plaza').head()
vehiclesez vehiclescash

hr plaza
0 1 669 315

2 554 160
1 1 1085 426

2 799 259
2 1 922 426

As you can see we have moved plaza from the column index back as a row index. The only difference
between this and the original DataFrame is the order of the index, which we could remove with
reset_index.

• This might seem like magic, but lets think through the operation a bit and see if we can make sense
of it. First, when we stack a DataFrame all columns with the same values are treated the same in
the resulting DataFrame. This makes the reshape that much easier to conceptualize: all examples of
plazas with the same number are going to have the number when we stack.

• The unstack operation also only works if the index that is set is unique for each row. By doing
this, there is no way to have a conflict on the reshape.

• If we make the data wide by unstack, there may not be values present in all varieties of each index
value. The stack operation, on the other hand, does not create any new data, so missing values
won’t be created.

• To use these operations its important to consider the following:

– What values do you want in the new rows and columns: Are they unique? If not, stop.

310

D
RA
FT

– Once you have identified which values are moving, determine what is a value and what should
be in the index.

– Set the index

– Call stack or unstack with the appropriate variable, from the index, selected.

• Note that you can do multiple values in your reshaping by providing a list. Consider the following:

>>> d_1 = (dfMTA.loc[(dfMTA.mtadt == '2016-01-01')
& ((dfMTA.loc[:, 'plaza']==1) | (dfMTA.loc[:, 'plaza'] == 2)),
['plaza', 'hr', 'vehiclesez', 'direction', 'vehiclescash']]
.reset_index(drop=True)
. set_index(['plaza', 'hr', 'direction'])
.unstack(['plaza', 'direction'])
)

>>> d_1.head()
vehiclesez vehiclescash

plaza 1 2 1 2
direction I O I O I O I O
hr
0 669 552 554 760 315 300 160 241
1 1085 896 799 1123 426 437 259 357
2 922 747 670 933 426 447 320 360
3 767 694 518 728 450 407 187 257
4 724 577 423 586 429 369 180 188

• Returning to the above, we can also do a “semi” stack:

>>> d_1.stack('plaza').head()
vehiclescash vehiclesez

direction I O I O
hr plaza
0 1 315 300 669 552

2 160 241 554 760
1 1 426 437 1085 896

2 259 357 799 1123
2 1 426 447 922 747

311

D
RA
FT

4 A Bunch of stuff to clean up

• You can see this in the below (no idea what we are talking about)

• When using expanding or rolling keep in mind that the DataFrame returned does not have a
clean index system. Continuing with the above example:

>>> d_1.index.names
['plaza', 'mtadt', 'hr', 'direction']

Unexpected! There are two levels of the index: one generated from the plaza groupby and another
with the name “None”. Even if we decide to stop the index creation with the groupby we will end
up with an unexpected result:

>>> d_2 = (dfMTA
.sort_values(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.expanding().agg({'vehiclesez' : 'sum'})
)

>>> d_2.index.names
['plaza', None]

Comparing the above, we see that both, dfMTAC and dfMTAC2 have an additional index column:

>>> d_1.head()
vehiclesez vehiclescash rcash rez

plaza mtadt hr direction
1 2015-11-28 0 I 477 205 817.0 653.333333

O 486 252 998.0 694.333333
1 I 350 171 646.0 499.666667

O 307 182 797.0 509.333333
2 I 280 133 509.0 369.000000

>>> d_2.head()
vehiclesez

plaza
1 103440 415.0

103441 801.0
103442 1503.0
103443 2037.0
103444 2596.0

• This additional index column has implications for how we combine this data with other DataFrames,
as we will see below.

5 Combining with the original DataFrame

• In the previous examples we generated a new Series or DataFrame which contained the data that we
were interested in. Frequently we wish to combine this new data with the DataFrame that generated
it and, sadly, this can be difficult as we need to create the column and then somehow put it back on

312

D
RA
FT

the original dataset.2

• There are a few different possibilities when doing this:

1. rolling or expanding without a groupby.

2. rolling or expanding with a groupby by creating an index.

3. rolling or expanding with a groupby by using an already present index.

We will go over each in the section below.

Without a groupby

• When there is no groupby we simply compute the expanding or rolling values, reset the index
and then select the column and join back on:

>>> d_1 = dfMTA.copy()

>>> d_1.loc[:, 'newcol'] = (d_1
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.loc[:, 'vehiclescash'])

>>> d_1.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2015-11-28 0 I 477 205 205.0
1 1 2015-11-28 0 O 486 252 457.0
2 1 2015-11-28 1 I 350 171 628.0
3 1 2015-11-28 1 O 307 182 810.0
4 1 2015-11-28 2 I 280 133 943.0

• In the case where we want to sort the data beforehand, it is import to sort_values as well as
reset_index on the original DataFrame to make sure that everything stays aligned:

>>> d_1 = dfMTA.sort_values(['mtadt', 'hr']).reset_index(drop=True).copy()

>>> d_1.loc[:, 'newcol'] = (d_1
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.loc[:, 'vehiclescash'])

>>> d_1.head()
plaza mtadt hr direction vehiclesez vehiclescash newcol

0 1 2010-01-01 0 I 415 474 474.0
1 1 2010-01-01 0 O 386 412 886.0
2 2 2010-01-01 0 I 457 290 1176.0
3 2 2010-01-01 0 O 529 321 1497.0
4 3 2010-01-01 0 I 701 406 1903.0

2I’m really open to being wrong on this, but after spending a significant amount of time on this, I haven’t seen a consistent
solution outside what is shown here.

313

D
RA
FT

Note that the only difference between the two previous code blocks is the sort_values and
reset_index commands.

With a GroupBy and Creating an Index

• Let’s say that we don’t have an obvious set of index columns to use, but we still wish to use a
groupby with a window function. In this case we need to create an index.

• Consider the following situation where we want to calculate the running sum of inbound cars over
the entire DataFrame, but partitioned by plaza:

>>> d_1 = (dfMTA
.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.reset_index(drop=True)
)

>>> d_1.index
RangeIndex(start=0, stop=613608, step=1)

At this stage we have set up our original dataset to be sorted correctly and created a new integer
index. The reason for the drop=True line is to prevent the original index from being placed in the
DataFrame.3

We now take this DataFrame and create our running sum, making sure to start from the sorted
DataFrame:

>>> d_2 = (d_1
.groupby('plaza', sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
)

>>> d_2.head()
vehiclescash

plaza
1 0 474.0

1 1191.0
2 1855.0
3 2450.0
4 2997.0

>>> d_2.index.names
['plaza', None]

Looking at the above, we can see that the index is no longer a RangeIndex and has changed! Mean-
ing that we probably can’t merge it back onto the original DataFrame without some modification.

• Note also that we included the option “sort=False” in our GroupBy. We did this because we want
to make sure that this method doesn’t change the order of the data. Since we know that the order
is going to be stable, we reset the index:

3The original index was also an RangeIndex, but since we dropped all of the outbound rows as well as sorted the DataFrame,
the original index does not exist in the proper form.

314

D
RA
FT

>>> d_2.loc[:, 'runningsum'] = d_2.reset_index().loc[:, 'vehiclescash']

>>> d_2.head()
vehiclescash runningsum

plaza
1 0 474.0 NaN

1 1191.0 NaN
2 1855.0 NaN
3 2450.0 NaN
4 2997.0 NaN

• Combining this all together into two lines:

>>> d_1 = (dfMTA
.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.reset_index(drop=True)
)

>>> d_1['runningsum'] = (d_1
.groupby('plaza', sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index(drop=True)
.loc[:, 'vehiclescash']

)

With a GroupBy using an index

• Alternatively, we can rely on an unique set of index column if they are present in the DataFrame.
Redoing the example above:

>>> d_1 = (dfMTA.loc[(dfMTA.loc[:, 'direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
)

>>> d_1.loc[:, 'runningsum'] = (d_1
.reset_index('plaza')
.groupby('plaza', as_index=False, sort=False)
.expanding()
.agg({'vehiclescash' : 'sum'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr'])
.loc[:, 'vehiclescash'])

• Looking at the above, we set_index on the original DataFrame and then set it again on the created
dataset.

• IMPORTANT: A caveat to the above is that if the index columns are not unique then we can run
into situations where the data is sorted differently in each and thus the merge may result in incorrect
results. This method should only be used if there is a set of columns which uniquely define a row.

315

D
RA
FT

6 Moving the Window

• A limitation in how Pandas implement window functions is that they do not naturally have the
ability to move the window – e.g. offset it by a number of rows.

• For example, lets say that I want to know the maximum value of a column up to, but not including the
current row? This could occur because I want to know if the current row is higher than the previous
maximum value. It’s easy enough to calculate the maximum up to, and including the current row,
but moving that window back one requires an additional operation.

• One way of doing this is to use the shift operator to move the data after the calculation occurs,
such as in the example below which calculates the maximum vehicles which use an cash up to, but
not including the current row (only in the inbound direction)

>>> d_1 = (dfMTA.loc[(dfMTA['direction'] == 'I'), ['plaza', 'mtadt', 'hr', 'vehiclescash']]
.sort_values(['plaza', 'mtadt', 'hr'])
.set_index(['plaza', 'mtadt', 'hr'])
)

>>> d_1.loc[:, 'runningmax_no_current'] = (d_1
.reset_index('plaza')
.groupby('plaza', as_index=False, sort=False)
.expanding()
.agg({'vehiclescash' : 'max'})
.reset_index()
.set_index(['plaza', 'mtadt', 'hr'])
.groupby('plaza', as_index=False)
.shift(1)
.loc[:, 'vehiclescash']

)

>>> d_1 = d_1.reset_index()

• The last line removes the index that we created.

7 Pivot / Melt

• While we won’t cover it in this course, the pivot and melt commands are powerful way to reshape
data.

• While they nearly map to stack and unstack, they do not require the use of an index.

316

D
RA
FT

Appendix A

Data Dictionaries

317

D
RA
FT

1 Introduction

This chapter contains information on the data used in this course and how to load it into PostgreSQL
and Pandas. To begin loading the data, clone the git repo that can be found at https://github.com/
NickRoss/sql-data.

The repo itself contains a script (load_data.py) which will load the data into a PostgreSQL compatible
database as well as a Docker image for running PostgreSQL via containers. If one wishes to load the data
themselves, this appendix contains a basic framework for loading each table.

This section also contains information on how to load some of the datasets into Pandas. In both cases
(Pandas and SQL), the <FILEPATH> parameter needs to be changed to the location of the file on your
local machine.

2 Iowa Fleet data

This table contains automobile registration information and annual fees for the state of Iowa. Note that a
few changes were made to the file. In particular, O’brien county was miscoded at times and NULL counties
were removed. The final table contains 41,202 rows of data.

CREATE TABLE and COPY commands which load the data into a PostgreSQL compatible database can
be found below:

create table cls.cars (
year int
, countyname varchar(20)
, motorvehicle varchar(3)
, vehiclecat varchar(15)
, vehicletype varchar(55)
, tonnage varchar(30)
, registrations int
, annualfee float
, completecategory varchar(90)

);

COPY cls.cars FROM '<FILEPATH>/iowa_cars.tdf'
CSV DELIMITER AS E'\t'

To load the data into Pandas, the following command can be used:

dfCars = pd.read_csv('<FILEPATH>/iowa_cars.tdf',
sep='\t', engine='python', names=['year', 'countyname',
'motorvehicle' ,'vehiclecat', 'vehicletype',
'tonnage', 'registrations', 'annualfee',
'completecategory'])

318

https://github.com/NickRoss/sql-data
https://github.com/NickRoss/sql-data

D
RA
FT

Table A.1: Data Dictionary for Iowa Cars Data

Column Example Values Data Type Description

Year 2011 Int Calendar year vehicle was reg-
istered

CountyName “Adair” Varchar(20) County vehicle was registered.
Those without a county listed
were registered/titled by the
State

MotorVehicle “Yes” VarChar(3) Indicates whether motor vehi-
cle (Yes) or trailer (No).

VehicleCat “Trailer” VarChar(15) Broad category for vehicle
types.

Vehicletype “Bus” VarcChar(25) Type of vehicle registered.
tonnage “4 tons” charchar(30) Tonnage category for truck

and truck tractor vehicle
types.

registrations 397 int Number of vehicle registra-
tions.

annualfee 1470 float Annual fee associated with ve-
hicle registrations.

completecategory “Truck – 3 Tons” varchar(90) Combination of VehicleType
and tonnage.

3 NY MTA Data

The data in this table represents hourly traffic on NY’s MTA system.1 Information in Table A.1 contains
the map between toll plaza ID and the name of the toll plaza. The final table contains 1,165,728 rows of
data.

In order to load the data use the following set of commands:

create table cls.mta (
plaza int
, mtadt date
, hr int
, direction varchar(1)
, vehiclesEZ int
, vehiclesCASH int

);

COPY cls.mta from '<FILEPATH>/MTA_Hourly.tdf'
CSV DELIMITER AS E'\t'

Loading the data into Pandas can be accomplished with the following command:

1Information was downloaded from this location: https://catalog.data.gov/dataset/
hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-

319

https://catalog.data.gov/dataset/hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-
https://catalog.data.gov/dataset/hourly-traffic-on-metropolitan-transportation-authority-mta-bridges-and-tunnels-beginning-

D
RA
FT

dfMTA = pd.read_csv('<FILEPATH>/MTA_Hourly.tdf',
sep='\t', engine='python', names=['plaza', 'mtadt',
'hr', 'direction', 'vehiclesez', 'vehiclescash'])

dfMTA.mtadt = pd.to_datetime(dfMTA.mtadt)

Column Example Values Data Type Description

plaza 1,2,3 Int Plaza Number (more informa-
tion below)

mtadt 1/1/2012 Date Observation Date
hr 0 - 23 Int Hour of observation
direction I, O varchar(1) Direction of traffic (Inbound

vs. Outbound)
vehiclesez 1254 int The number of vehicles that

pass through each bridge and
pay with EZ pass

vehiclescash 1254 int The number of vehicles that
pass through each bridge and
pay with cash

Figure A.1: Information on Plaza number for MTA Hourly data

Plaza ID Name

1 Robert F. Kennedy Bridge Bronx Plaza (TBX)
2 Robert F. Kennedy Bridge Manhattan Plaza (TBM)
3 Bronx-Whitestone Bridge (BWB)
4 Henry Hudson Bridge (HHB)
5 Marine Parkway-Gil Hodges Memorial Bridge (MPB)
6 Cross Bay Veterans Memorial Bridge (CBB)
7 Queens Midtown Tunnel (QMT)
8 Hugh L. Carey Tunnel (HLC) formally known as Brooklyn-Battery Tunnel (BBT)
9 Throgs Neck Bridge (TNB)
11 Verrazano-Narrows Bridge (VNB)

320

D
RA
FT

4 Daily Stock Data: s2010 and s2011

The tables s2010 and s2011 contain information on daily prices for stocks that appear on the NYSE or
NASDAQ. The table s2010 has 816,066 rows while the table s2011 has 864,110 rows.

The columns symb and retdate define a unique row for each table.

The commands below will generate two tables, s2010 and s2011 in the schema “stocks” and then load the
data into those two tables. Note that “<FILEPATH>” has to be changed to the path of where the data
lies in on the machine which is loading the data.

create table stocks.s2010 (
symb varchar(6)
, retdate date
, opn float
, high float
, low float
, cls float
, vol int
, exch varchar(8));

COPY stocks.s2010 FROM
'<FILEPATH>/s2010.tdf'
CSV DELIMITER E'\t';

reate table stocks.s2011 (
symb varchar(6)
, retdate date
, opn float
, high float
, low float
, cls float
, vol int
, exch varchar(8));

COPY stocks.s2011 FROM '<FILEPATH>/s2011.tdf'
CSV DELIMITER E'\t';

To load the data into Pandas DataFrames, use the following command:

df2010 = pd.read_csv('<FILEPATH>/s2010.tdf',
sep='\t', engine='python',
names=['symb', 'retdate', 'opn',
'high', 'low', 'cls', 'vol', 'exch'])

df2011 = pd.read_csv('<FILEPATH>/s2011.tdf',
sep='\t', engine='python',
names=['symb', 'retdate', 'opn',
'high', 'low', 'cls', 'vol', 'exch'])

321

D
RA
FT

If you wish to have the dates be converted to dates you can use the following commands to update the
DataFrame.

df2010[:, 'retdate'] = pd.to_datetime(df2010.retdate)
df2011[:, 'retdate'] = pd.to_datetime(df2011.retdate)

Alternatively, you can load retdate as a date using the following:

df2010D = pd.read_csv('../sql-data/raw_data/s2010.tdf'
,sep='\t', engine='python', names=['symb'
, 'retdate','opn', 'high', 'low', 'cls',
'vol', 'exch'], parse_dates = ['retdate'])

df2011D = pd.read_csv('../sql-data/raw_data/s2011.tdf'
,sep='\t', engine='python', names=['symb'
, 'retdate','opn', 'high', 'low', 'cls',
'vol', 'exch'], parse_dates = ['retdate'])

Column Type Description

symb Varchar Code for the stock being
traded.

retdate Date Date for the stock being
traded.

opn float The open price of the stock.

high float The high price of the stock
that day.

low float the low price of the stock that
day.

cls float the closing price of the stock
that day.

vol int the number of share traded
that day.

exch varchar what exchange the stock is
traded on.

5 Annual Fundamental Financial information: fnd

The tables fnd contains information taken from annual reports for stocks. The key to these tables are the
columns datadate and gvkey. The table has 33,817 rows of data and spans most of 2010 and 2011.

The commands below will load the fnd data in the schema “stocks”. Note that “<FILEPATH>” has to
be changed to the path of where the data lies in on the machine which is loading the data.

322

D
RA
FT

create table stocks.fnd (
gvkey varchar(8)
, datadate date
, fyear int
, indfmr varchar(4)
, consol varchar(1)
, popsrc varchar(1)
, datafmt varchar(3)
, tic varchar(8)
, cusip varchar(11)
, conm varchar(30)
, fyr int
, cash float
, dp float
, ebitda float
, emp float
, invt float
, netinc float
, ppent float
, rev float
, ui float
, cik varchar(10)

);

COPY stocks.fnd FROM '<FILPATH>/fnd.tdf
CSV DELIMITER E'\t';

To load the data into Pandas, use the following command:

dffnd = pd.read_csv('<FILEPATH>/fnd.tdf'
,sep='\t', engine='python', names=['gvkey', 'datadate',

'fyear', 'indfmr', 'consol', 'popsrc', 'datafmt', 'tic'
, 'cusip', 'conm', 'fyr', 'cash', 'dp', 'ebitda', 'emp'
, 'invt' , 'netinc', 'ppent', 'rev', 'ui', 'cik'])

323

D
RA
FT

Column Min. Val/Len Max. Val/Len Description

cash -0.01 168896.51 The amount of cash on the
balance sheet. Measured in
millions of dollars.

cik 10 10 SEC identifier for corpora-
tions.

conm 3 30 Company Name

consol 1 1 If the information is consol-
idated with subsidiaries or
kept separate.

cusip 9 9 Another identifier, this one
maintained by the CUSIP bu-
reau.

datafmt 3 3 Represents how the data was
collected.

dp -0.24 23713.56 GAAP depreciation and
Amortization from the in-
come statement. Measured in
Millions of dollars.

ebitda -45026.00 124840.00 Earnings Before Interest
Taxes and Depreciation,
measured in millions of
dollars

emp 0.00 2100.00 Number of employees, mea-
sured in thousands.

fyear 2008 2011 Fiscal year. Note that a
fiscal year is defined as the
year with the most months of
the calendar year with June
falling forward.

fyr 1 12 Month in which the fiscal year
ends.

324

D
RA
FT

Column Min. Val/Len Max. Val/Len Description

gvkey 6 6 Unique Company Identifier
used in the Fundamental Data

indfmr 4 4 Represents how the infor-
mation is presented in the
database.

invt 0.00 373176.43 Inventory from the balance
sheet. Measured in Millions of
Dollars.

netinc -71969.00 104821.00 Net Income, in millions of dol-
lars from the Income State-
ment.

popsrc 1 1 Source of the data. D means
Domestic.

ppent 0.00 218567.00 Total Property Plants and
Equipment from the Balance
Sheet, measured in Millions of
Dollars.

retdate 8 8 Data Date: Date which the
information becomes available
to the public. Represents the
date of the fiscal year-end.

rev -6749.63 470171.00 Total Sales from the Income
Statement, measured in Mil-
lions of Dollars

tic 1 8 Ticker Symbol. Note that this
is modified under certain cir-
cumstances.

ui 0.00 0.00 Unearned Income, measured
in millions of dollars.

6 Soap Transaction Data

This table consists of information relating to a subscription soap service. There are two ways that customers
can order: either via subscription or by a one-off (“unit”) purchase. There are two different order types:
single bars or double bars, though an order can have multiple of a single type in it. For example, if a row
is double bars and there are “2” in the units column, this means that there were four total bars in the
order associated with that row. The table has 1,047,381 rows of data.

The following commands define a table for the soap data as well as populate that table.

325

D
RA
FT

create table cls.trans (
orderid int
, userid int
, trans varchar(15)
, type varchar(15)
, local varchar(10)
, trans_dt date
, units int
, coupon float
, months int
, amt float);

COPY cls.trans from '<FILEPATH>/soapData.tdf'
CSV DELIMITER E'\t';

Column Example Values Data Type Description

orderid 1,2,3 Int Unique ID for the order
userid 1,2,3 int Unique ID for the user
trans Double Bar varchar Bar type in order
type Unit, Sub varchar Is this part of a subscription

or one off transaction?
local Mexico varchar Location of the customer
trans dt date 12/22/2016 Date of the transaction
units 1,2,3 int Number of that trans in the

order
coupon .25 float the percent coupon applied
months 1,2,3 int If a subscription, the timing of

the subscription
amt 47.96 float The total price of the transac-

tion

To load the data into Pandas, use the following command:

dfTrans = pd.read_csv('<FILEPATH>/soapData.tdf'
, sep='\t', engine='python', names = ['orderid',
'userid', 'trans', 'type', 'local', 'trans_dt',
'units', 'coupon', 'months', 'amt'],
parse_dates=['trans_dt'])

326

D
RA
FT

Appendix B

Connecting SQL to Python or R

In this Appendix we will briefly look at how to connect SQL to Python or R. Unfortunately connecting both
programming languages can be difficult. There are a number of different ways to make the connection.

1 Connecting to any database: ODBC and JDBC

ODBC is an API for connecting to database systems. It was originally developed in the early 1990’s,
though it is still in use today. RODBC and PyODBC are the primary ways of connecting R and Python
to ODBC interfaces.

JDBC is a JAVA extension of ODBC. It is the primary way that most SQL clients connect to databases.
In order to use JDBC, a JDBC driver for a database must be provided. In the case of PopSQL, the driver
is built-in, though most other SQL clients require the drivr to be downloaded.

JayDeBeApi and RJDBC are the two common tools for connecting Python and R to databases via JDBC
drivers.

In both cases (ODBC and JDBC), the driver provides a standard interface between the client application
and the database. These interfaces are specific to the database – you can think of them as printer drivers for
your database. The PostgreSQL JDBC driver will not allow you to connect to a MS-SQL database.

2 Connecting only to PostgreSQL

If you only wish to connect to a single database variant, then you can use packages and programs that are
built around that server, rather than more generalized packages.

Generally speaking variant specific tools tend to be more robust and easier to use. The downside is that
information about one cannot necessarily be used for other variants.

For Python, the most common tool for connecting to PostgreSQL is the package psycopg2 while R has a
package RPostgreSQL. Using either tool requires setting up a connect and then sending queries through
that connection.

As an example, the following Python code attempts to create a table. If there is an error, the connection
is reset. Note the use of both the “commit” command and the “rollback” command. These are necessary
because psycopg2 does not automatically commit its transaction. Keep in mind that the code below will
not run without providing host, db name, user and password information.

Installing psycopg2 can be difficult. On Macs I install it using brew, though it can be installed via other
library management tools.

327

D
RA
FT

conn_string = "host='%s' dbname='%s' user='%s' password='%s'" % (ahost, adbname, aUser, apass)
Sconn = psycopg2.connect(conn_string)
Scur = Sconn.cursor()

cmds = ["""create table cls.cars (
year int
, countyname varchar(20)
, motorvehicle varchar(3)
, vehiclecat varchar(15)
, vehicletype varchar(55)
, tonnage varchar(30)
, registrations int
, annualfee float
, completecategory varchar(90)

);"""]

for x in cmds:
try:

Scur.execute(x)
Sconn.commit()

except psycopg2.ProgrammingError:
print("""CAUTION FAILED: '%s' """ % x)
Sconn.rollback()

Using RPostgreSQL, the code below will create an object with the result of the query:

require("RPostgreSQL")
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "XXX", host = "localhost"

, port = 5432, user = "XXX", password = "XXX")
df_postgres <- dbGetQuery(con, "SELECT * from cls.traffic;")

328

D
RA
FT

Appendix C

Assignments

329

D
RA
FT

1 HW #0A: PostgreSQL Installation

Complete the tasks below in order to complete the assignment. Importantly, nothing needs to be turned
in to complete this assignment.

Nothing needs to be physically turned in for this assignment, just make sure to complete the final step.

1. Install PostgreSQL on your computer. Note that installing PostgreSQL can be difficult and I recom-
mend doing some research before beginning. If you are using a mac, I recommend using homebrew
to install it. There is also something called PostgresAPP, which you can try.1

2. Once PostgresSQL is installed, please create a schema for the stocks database, which can be done
using the command below.

create schema stocks;
commit;

We will also create a schema for some other datasets that are using in the class, which is “cls” and
can be done using the commands below:

create schema cls;
commit;

3. All of the data required for the homework can be found on the canvas page and the queries required
to load the data onto your Postgres instance can be found in the data dictionary. Broadly speaking
to load the data you must:

(a) Have a schema to place the table in (which is what was done in the previous step)

(b) Create a table to load the data into (the CREATE TABLE commands can be found in the data
dictionary)

(c) Use a COPY command to move the data from its raw format into the database.

4. Please load the following datasets onto your local SQL instance: (1) stocks.s2010 (2) stocks.s2011,
(3) stocks.fnd

5. For an SQL Client, I would recommend using PopSQL. One important trick when installing is that
if you are referring to your local machine the host is “localhost.”

6. Make sure that on Slack and on the Canvas page you have a photo of yourself that will help me
recognize you. After bootcamp you are free to make your Slack icon whatever you want, but during
bootcamp you must have a recognizable photo as your avatar.

1I am not IT and am not going to diagnose issues relating to installing your software.

330

D
RA
FT

2 HW #0B: Pandas Installation

In order to do the assignments associated with pandas you will need to install Python (and specifically
the package pandas) on your computer. The easiest way to do this is by using Anaconda (https:
//www.anaconda.com/) and then use Jupyter Notebooks (https://jupyter.org/install).

If you have this installed, you should be able to see a screen like the below and then run the commands
below:

import numpy as np
import pandas as pd

print(pd.Series([1,2,3]))

331

https://www.anaconda.com/
https://www.anaconda.com/
https://jupyter.org/install

D
RA
FT

3 HW #0C: MS CAPP Installation instructions

The first assignment is to set up and access the data used in this course.

• Make sure that on Slack channel and on the Canvas page.

• Install PostgreSQL on your computer.2 Note that installing PostgreSQL can be difficult and I
recommend doing some research before jumping in.

– The data itself can be found in the repo here: https://github.com/NickRoss/sql-data.

– You are welcome to install the PostgreSQL server however you like. The instructions in the repo
use docker and set up all the data (including table creation, loading data, etc.). However, if you
do not wish to install docker you are welcome to use an alternative method. Two alternatives
are: Postgres.app (https://postgresapp.com/) and brew (for macs).3

– If you use a non-docker based method you will be required to load the data into the database
yourself. Information and specific commands can be found in the data dictionary and the
additional instructions at the end of this document.

• You will also be required to install a PostgreSQL client. I personally use one called Postico, but
there are many, many others. PopSQL is a fun one to try too, but it requires an internet connection.
One important trick when installing is that if you are referring to your local machine the host is
“localhost.”

• Note that there is nothing to turn in on this assignment.

• If you installed WITHOUT using docker you need to do the following:

– Once PostgresSQL is installed, please create a schema for the stocks database, which can be
done using the command below.

create schema stocks;
commit;

We will also create a schema for some other datasets that are using in the class, which is “cls”
and can be done using the commands below:

create schema cls;
commit;

– All of the data required for the homework can be found in the repo and the queries required to
load the data onto your Postgres instance can be found in the data dictionary. Broadly speaking
to load the data you must:

1. Have a schema to place the table in (which is what was done in the previous step)

2. Create a table to load the data into (the CREATE TABLE commands can be found in the
data dictionary)

3. Use a COPY command to move the data from its raw format into the database.

– Please load the following datasets onto your local SQL instance: (1) stocks.s2010 (2) stocks.s2011,
(3) stocks.fnd in order to get access to the stocks data.

2I am not IT and am not going to diagnose issues relating to installing your software.
3Note that if you are installing with a mac you need to be careful regarding installation instructions for ARM based

processors and older models.

332

https://github.com/NickRoss/sql-data
https://postgresapp.com/

D
RA
FT

4 HW #1A: Basic SQL Querying

The following questions utilize the financial data in the s2010, s2011 and fnd tables. Before beginning the
assignment, please read the data dictionary to better understand the data. When doing so, keep an eye on
data types for different columns as well as table organization.

• If no table information is given, use the 2010 data.

• If the query returns a significant number of rows, please only copy a few rows in your response.

• For those queries which require specifying a date, please use the format 'YYYY-MM-DD' (as in
'2010-01-11'), making sure to use single quotes around the date itself.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

Using the 2010 stocks data, write a query that returns the following.

1. All rows and columns relating to AAPL.

2. The date, open and closing price for AAPL on the 7th of January in 2010.

3. Write a query which returns the stock symbol, the date, the open and close price for the top five
open prices in 2010 for stocks on the New York Stock Exchange (NYSE).

4. The days when AAPL has a volume more than 20 million and where the high is great than 45 dollars
(2010 data)

5. Write a query which returns 3 columns: the return date, stock symbol and volume, but only for
stocks that have a volume larger than 200 million in 2010.

Main Problems

1. Write a query which returns all information about about Google (GOOG), NetFlix (NFLX), Amazon
(AMZN) and Microsoft (MSFT) in 2010.

2. Consider stocks on the NYSE which had a volume of more than 1 million. Which stocks (symbol
and date) had their open price the same as their low and their closing price the same as their high
(2010 data). Order them by symbol alphabetically.

3. Consider stocks on the NYSE in 2010 which had a volume of more than 1 million. Which stocks
(symbol and date) had their closing price the same as their low and their opening price the same as
their high? Sort them by reverse chronological order.

4. Consider stocks on the NYSE in 2010 which had a volume of more than 1 million. Of those days
which a stock had either (a) open = low and close = high or (b) open = high and close = low, which
symbol and date has the largest volume traded?

5. Which company (ticker symbol) had the highest net income over all the years that are in the FND
table?

6. Which company (ticker symbol) had the highest net income in fiscal year 2011 (use the FND table)?

333

D
RA
FT

7. Which company (ticker symbol) had the lowest positive net income over all years (use the FND
table)?

8. Which company (ticker symbol), which had a net-income per employee over $1,000, had the largest
number of employees (over all years)? Keep units in mind (use the FND table)!

9. Which company (ticker symbol) had the lowest, positive, non-zero, net income in fiscal year 2011
(use the FND table)?

10. Of the companies which had more than 1,000 employees in 2011 which had the highest net income
per employee in 2011 (use the FND table)?

334

D
RA
FT

5 HW #1B: Basic Pandas

Repeat HW #1A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked The following provides a template
that you may wish to use.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

import pandas as pd
import numpy as np

df2010 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'])

df2011 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

Question #1
ans = df2010.loc[(df2010.loc[:, 'symb']=='AAPL'), :]
print(ans.head())

Question #2
df2010C = df2010.copy()
df2010C = df2010C.loc[(df2010.loc[:, 'retdate'] =='07-Jan-2010') &

(df2010.loc[:, 'symb']=='AAPL'), :]
df2010C.loc[:, 'diff'] = df2010C.loc[:, 'opn'] - df2010C.loc[:, 'cls']
ans = df2010C
print(ans.head())

First Five

Using the 2010 stocks data, write a query that returns the following.

1. All columns relating to AAPL.

2. All columns from the table and a column with the difference between open and close (open - close)
for AAPL on the 7th of January.

3. Write a query which returns the stock symbol, the date, the open and close price for the top five
differences (open - close) in 2010 for only those stocks on the New York Stock Exchange (NYSE).

4. The days when AAPL has a volume more than 20 million and where the high is $3 or more dollars
greater than the low. Write it twice, once to return a series and once as a dataFrame.

5. Write a query which returns 3 columns: the return date, SYMB and volume, but only for stocks that

335

D
RA
FT

have a volume larger than 200 million

Main Problems

1. Write a query which returns all information about about Google (GOOG), NetFlix (NFLX), Amazon
(AMZN) and Microsoft (MSFT) in 2010.

2. Write a query which returns the date and symbol of the largest “one-day gainer”, that is the stock
which has the highest close - open on the NYSE.

3. Write a query which returns the date and symbol of the largest “one-day percentage gainer”, that is
the stock which has the highest (close - open) / open on the NYSE.

4. Consider stocks on the NYSE which had a volume of more than 1 million. Which stocks (symbol
and date) had their open price the same as their low and their closing price the same as their high?

5. Consider stocks on the NYSE which had a volume of more than 1 million. Which stocks (symbol and
date) had their closing price the same as their low and their opening price the same as their high?

6. Consider stocks on the NYSE which had a volume of more than 1 million. Of those days which a
stock had either (a) open = low and close = high or (b) open = high and close = low, which symbol
and date has the largest volume traded?

7. Which company (ticker symbol) had the highest net income over all the years that are in the FND
table?

8. Which company (ticker symbol) had the highest net income in fiscal year 2011 (use the FND table)?

9. Which company (ticker symbol) had the lowest, non-zero, net income over all years (use the FND
table)?

10. Which company (ticker symbol), which had a net-income per employee over $1,000, had the largest
number of employees (over all years)? Keep units in mind (use the FND table)!

Even more problems

1. Which company (ticker symbol) had the lowest, non-zero, net income in fiscal year 2011 (use the
FND table)?

2. Of the companies which had more than 1,000 employees in 2011 which had the highest net income
per employee in 2011 (use the FND table)?

336

D
RA
FT

6 HW #2A: Basic Functions

The following questions utilize the financial data in the s2010, s2011 and fnd tables. Before beginning the
assignment, please read the data dictionary to better understand the data. When doing so, keep an eye on
data types for different columns as well as table organization.

• If no table information is given, use the 2010 data.

• If the query returns a significant number of rows, please only copy a few rows in your response.

• For those queries which require specifying a date, please use the format 'YYYY-MM-DD' (as in
'2010-01-11'), making sure to use single quotes around the date itself.

In the problems below you may need to use the following definitions:

• Profit Margin: Net Income divided by Revenue.

• Turnover: Revenue divided by Inventory.

• Dollar-volume: This is the dollar value of stocks traded based on the closing price, so equal to the
closing price of the shares traded multiplied by the volume.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. Write a query which returns the date and symbol of the largest “one-day gainer” on the NYSE in
2010, that is the stock which has the highest close - open.

2. Return the symbol, return date and the dollar volume traded for the highest dollar volume traded
stocks in 2010 on the NYSE.

3. Using the fnd data, which companies (company name), in fiscal year 2010 had a profit margin greater
than 20%, turnover more than 2 and more than 10,000 employees?

4. What are the symbols and dollar volume traded for the companies with the top 5 dollar (based on
closing price) volume traded on February 3rd 2010 (NYSE only)?

5. Write a query which returns the stock (symbol only) which has the largest (absolute) difference
between high and low price for those stocks which have an absolute difference between their high and
low of less than $1 dollar and a volume greater than 5,000 (NYSE only in 2010).

Main Problems

1. The “one-day percentage gain” is equal to close−open
open . Write a query which returns the date and

symbol of the largest one-day percentage gainer of NYSE stocks in 2010.

2. Write a query which returns the date and symbol of the largest one-day percentage gainer for those
stocks on the NYSE whose symbol begins with the letter “R” in 2010.

3. Write a query which returns all stocks (symbol and date) with a one-day percentage gain of more
than 70 percent whose symbol either begins with R or ends with C.

4. Write a query which returns the stock (symbol) whose second letter (in their symbol) is “T” and is
the largest one-day percentage gainer.

337

D
RA
FT

5. For those stocks in fiscal year 2010 with a negative net income, which stock (company name) had
the largest amount of inventories (fnd table)?

6. Using the fnd table, write a query which returns the company name and the net income for the stock
(in 2010) with the largest net income among those stocks with the phrase “data” (case-insensitive)
in the company name.

7. Using the fnd table, write a query which returns the top-5 most profitable (highest net income) com-
panies (and their net income) for those companies with either “bank” or “financial” (case-insensitive)
in their company name for fiscal year 2010.

8. Using the fnd table, write a query which returns the minimum of ebitda or net income (call it
min profit) and the company name for companies with “apple” (case-insensitive) in their name.
Order the results by number of employees from highest to lowest and only include those companies
which have all three numeric columns (ebidta, netinc and emp) present.

9. Using the fnd table, write a query which returns squared difference between ebitda and net income
(call it sqr diff) as well as the company name for companies in fiscal year 2010 whose name includes
both a Z and a K, but does not contain a C.

10. Write a query which returns the 2 lowest, positive, net incomes (as well as company names) for those
companies in fiscal year 2010 with “ING” in their name where the total number of characters in their
name is between 5 and 12 (inclusive).

338

D
RA
FT

7 HW #3A: Subqueries

Answer the following questions using only the syntax discussed in class. If a year is unspecified, please use
the 2010 data and refer to the data dictionary for questions regarding the contents of each table. Be careful
when using the fnd data as many of the items in that dataset are scaled by a factor (e.g. in thousands or
millions).

Three terms that are defined in this assignment:

• Profit Margin: Net Income divided by Revenue.

• Turnover: Revenue divided by Inventory.

• Dollar-volume: This is the dollar value of stocks traded based on the closing price, so equal to the
closing price of the shares traded multiplied by the volume.

For each question, please provide the query which will generate the result.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. Using the daily stock data from 2010, return a list of the unique trading days in 2010.

2. Using the 2010 data return the stock (symbol), the date and the dollar-volume for the stock with the
largest dollar-volume traded on the NYSE (on a single day).

3. Using the 2010 data, return the stock (symbol only) with the largest volume on Jan 11th that also
appears on Dec 1st.

4. Using the 2010 data, return the stock symbol and a column called “HFlag” which is equal to 1 if the
high - low is greater than 1 and zero otherwise. Only return those companies whose stock symbol
begins or ends with “A”.

5. Write a query which returns (a) the date, (b) closing price and (c) a flag (“gt30”) which is equal to
“1” when the closing price is greater than $30.00 and “0” otherwise for “AAPL” in 2010.

Main Problems

1. Return the list of symbols that exist in 2011, but not 2010.4

2. Using the fnd data, return company name, year and the a column called “HFlag” which is equal to
1 if the company has a net income larger than $1 Billion dollars and 0 otherwise. Only include those
companies whose name begins with “B”.

3. Using the fnd data, which ticker symbols have a net income to employee ratio greater than $1,000 in
fiscal year 2010 and also have a net income between 20 and 30 million dollars in 2011?

4. The lowest five symbols by volume from Janaury 11th, 2010 that have a volume between 1 million
and 10 million on December 1st, 2011. In other words, of those stocks which had between 1 and 10
million shares traded on December 1st, 2011, which five have the lowest volume traded on January
11th, 2010.

4If this is slow, try using distinct and see what happens. Any ideas why this may happen?

339

D
RA
FT

5. Of the stocks (symbols) that existed in 2011, but not in 2010, which had the highest closing price in
2011?

6. Which symbols were in the top 500 of dollar volume on the 2nd, 3rd and 4th days of February 2011
(The stock needs to be in the top 500 for all days)?

7. Of the symbols that had volume between 100,000 and 1,000,000 on the 2nd and 3rd of February 2011,
which had volume greater than 5,000,000 on the 4th on February?

8. Write a query to generate the following dataset:

• company name, ticker symbol, revenue for all companies whose name begin with “A” or “a”

• A column, revflag which is 1 if revenue is greater than $25,000,000 and 0 otherwise.

9. Write a query to generate the following dataset:

• company name, ticker symbol, revenue, inventory and employee information from fiscal year
2010

• A column called turnflag which is 1 for companies with turnover greater than 2, 0 otherwise

• For a company to be included it must have revenue, inventory and employee all greater than
zero for both 2010 and 2011

Additional Problems

1. Of the stocks (ticker symbols) that have a net income to revenue ratio (called a profit margin) greater
than 20%, which have more than 25,000 employees in fiscal year 2011?

2. We define revenue divided by inventory as the turnover. It expresses how many times the inventory
has turned-over during the year in the form of sales. For companies (ticker symbols) with revenue
between 1 and 2 million dollars in 2010, what company has the highest turnover in 2011?

3. Of the stocks (ticker symbol) that have profit margin greater than 20% in 2010, which had a profit
margin greater than 30% in fiscal year 2011?

4. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and more than 1,000 employees in 2011, what is the highest profit margin in fiscal year
2011 and what is the ticker symbol?

5. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and more than 1,000 employees in 2011, what is the lowest profit margin in fiscal year
2011?

6. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and between 1,000 and 2,000 employees in 2011, what is the highest profit margin in fiscal
year 2011 and what is the ticker symbol?

7. Of the companies (ticker symbols) with turnover between 1 and 2 in 2010, which companies also had
a net income to employee ratio greater than $1,000 in 2010?

8. Of the companies (ticker symbols) with turnover between 1 and 2 in 2010, which companies also had
a net income to employee ratio greater than $1,000 in 2011?

9. Write a select statement to generate the following dataset:

• company name, ticker symbol, revenue, inventory and employee information from both 2010
and 2011 fiscal years.

340

D
RA
FT

• A column called invtflag which is equal to 1 for companies with turnover between 2 and 3, 2 for
turnover between 3 and 4 and 5 for turnover greater than 4 and zero otherwise.

• A column called invtProfit which is equal to 1 for companies with less than 20% profit margin
and turnover greater than 2, 2 for companies with profit margin greater than 40% and turnover
greater than 2 and 0 otherwise.

• A column called EmployeeProfit which is equal to 0 for companies that have profit margins
between 20% and 40% and have more than 10,000 employees, is equal to a company’s profit
margin if the margin is less than 20%, is equal to twice the number of employees (if it exists) if
the profit margin is greater than 40% and is -1 otherwise.

341

D
RA
FT

8 HW #3B: Subqueries in Pandas

Repeat HW #3A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked. The same requirements as in HW
#1B apply.

Three terms that are defined in this assignment:

• Profit Margin: Net Income divided by Revenue.

• Turnover: Revenue divided by Inventory.

• Dollar-volume: This is the dollar value of stocks traded based on the closing price, so equal to the
closing price of the shares traded multiplied by the volume.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

Initial Information
import pandas as pd
import numpy as np
df2010 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',

sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls' , 'vol', 'exch'])

df2011 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

First Five

1. Using the daily stock data from 2010, return an array of the unique trading days in 2010.

2. Return the symbol, return date and the dollar volume traded for the highest dollar volume traded
stocks in 2010 on the NYSE.

3. Using the 2010 data, return the stock (symbol only) with the largest volume on Jan 11th that also
appears on Dec 1st.

4. Using the 2010 data, return the stock symbol and a column called “HFlag” which is equal to 1 if the
high - low is greater than 1 and zero otherwise. Only return those companies whose stock symbol
begins or ends with “A”.

5. Write a query which returns (a) the date, (b) closing price and (c) a flag (“gt30”) which is equal to
“1” when the closing price is greater than $30.00 and “0” otherwise for “AAPL” in 2010.

Main Problems

1. Return the list of symbols that exist in 2011, but not 2010.

342

D
RA
FT

2. Using the fnd data, return company name, year and the a column called “HFlag” which is equal to
1 if the company has a net income larger than $1 Billion dollars and 0 otherwise. Only include those
companies whose name begins with “B”.

3. Using the fnd data, which ticker symbols have a net income to employee ratio greater than $1,000 in
fiscal year 2010 and also have a net income between 20 and 30 million dollars in 2011?

4. Using the fnd data, which companies (company name), in fiscal year 2010 had a profit margin greater
than 20%, turnover more than 2 and more than 10,000 employees?

5. The lowest five symbols by volume from Janaury 11th, 2010 that have a volume between 1 million
and 10 million on December 1st, 2011. In other words, of those stocks which had between 1 and 10
million shares traded on December 1st, 2011, which five have the lowest volume traded on January
11th, 2010.

6. Of the stocks (symbols) that existed in 2011, but not in 2010, which had the highest closing price in
2011?

7. Which symbols were in the top 500 of dollar volume on the 2nd, 3rd and 4th days of February 2011
(The stock needs to be in the top 500 for all days)?

8. Of the symbols that had volume between 100,000 and 1,000,000 on the 2nd and 3rd of February 2011,
which had volume greater than 5,000,000 on the 4th on February?

9. Generate the following dataset:

• company name, ticker symbol, revenue for all companies whose name begin with “A” or “a”

• A column, revflag which is 1 if revenue is greater than $25,000,000 and 0 otherwise.

10. Generate the following dataset:

• company name, ticker symbol, revenue, inventory and employee information from fiscal year
2010

• A column called turnflag which is 1 for companies with turnover greater than 2, 0 otherwise

• For a company to be included it must have revenue, inventory and employee all greater than
zero for both 2010 and 2011

Additional Problems

1. Of the stocks (ticker symbols) that have a net income to revenue ratio (called a profit margin) greater
than 20%, which have more than 25,000 employees in fiscal year 2011?

2. We define revenue divided by inventory as the turnover. It expresses how many times the inventory
has turned-over during the year in the form of sales. For companies (ticker symbols) with revenue
between 1 and 2 million dollars in 2010, what company has the highest turnover in 2011?

3. Of the stocks (ticker symbol) that have profit margin greater than 20% in 2010, which had a profit
margin greater than 30% in fiscal year 2011?

4. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and more than 1,000 employees in 2011, what is the highest profit margin in fiscal year
2011 and what is the ticker symbol?

5. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and more than 1,000 employees in 2011, what is the lowest profit margin in fiscal year
2011?

343

D
RA
FT

6. Of the stocks (ticker symbols) that have a net-income to employee ratio greater than $1,000 in fiscal
year 2010 and between 1,000 and 2,000 employees in 2011, what is the highest profit margin in fiscal
year 2011 and what is the ticker symbol?

7. Of the companies (ticker symbols) with turnover between 1 and 2 in 2010, which companies also had
a net income to employee ratio greater than $1,000 in 2010?

8. Of the companies (ticker symbols) with turnover between 1 and 2 in 2010, which companies also had
a net income to employee ratio greater than $1,000 in 2011?

9. Write a select statement to generate the following datasets:

• company name, ticker symbol, revenue, inventory and employee information from both 2010
and 2011 fiscal years.

• A column called invtflag which is equal to 1 for companies with turnover between 2 and 3, 2 for
turnover between 3 and 4 and 5 for turnover greater than 4 and zero otherwise.

• A column called invtProfit which is equal to 1 for companies with less than 20% profit margin
and turnover greater than 2, 2 for companies with profit margin greater than 40% and turnover
greater than 2 and 0 otherwise.

• A column called EmployeeProfit which is equal to 0 for companies that have profit margins
between 20% and 40% and have more than 10,000 employees, is equal to a company’s profit
margin if the margin is less than 20%, is equal to twice the number of employees (if it exists) if
the profit margin is greater than 40% and is -1 otherwise.

10. What are the symbols and dollar volume traded for the companies with the top 5 dollar volume
traded (based on closing price) on February 3rd 2010 (NYSE only)?

344

D
RA
FT

9 HW #4A: Aggregation

Answer the following questions using only the syntax discussed in class. If a year is unspecified, please use
the 2010 data and refer to the data dictionary for questions regarding the contents of the data.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. What is the total number of rows in the 2010 database?

2. How many unique symbols are there in 2010?

3. What is the minimum closing price for a stock when it had a volume greater than 1,000,000 shares
in 2010?

4. Return the average closing price for all stocks from the NYSE in 2010?

5. Return the average closing price for all stocks and the total number of rows by the exchange of each
stock for 2010. Order the results from lowest to highest average closing price. This should return
two rows and three columns (exchange, average closing price and total number of rows)

Main Problems

1. Which symbols have less than 50 rows in 2010?

2. How many symbols have less than 50 rows in 2010?

3. Write a query which returns one row and two columns. The first column should contain the number
of symbols which have less than 50 rows in 2010 and the second column should have the number of
symbols with more than 100 rows in 2010.

4. Write a query which returns two column and two rows. The first column should be named “numtype”
which should be equal to “less than 50” or “more than 100” and the second column should have the
number of unique symbols which correspond to this condition. In other words, the same numbers as
the previous problem, transposed with an column providing a description.

5. Write a query which returns three rows and two columns. The first column should contain the average
yearly total traded volume for symbols which had (1) more than 100 trading days (2) less than 50
trading days and (3) between 50 and 100 trading days. The other column should identify each row
and be called “numType.”

6. Write a query which returns three rows and two columns. The first column should contain the average
daily traded volume for symbols which had (1) more than 100 trading days (2) less than 50 trading
days and (3) between 50 and 100 trading days. The other column should identify each row and be
called “numType.”

7. How many of the symbols had a day where the dollar volume (closing price multiplied by number of
shares traded) was greater than 100 million dollars in 2010?

8. What percentage of the symbols had a day where the dollar volume of shares traded was greater
than 100 million dollars in 2010?

345

D
RA
FT

9. Using only the SUM, AVG and COUNT aggregate functions, compute the covariance between the
the closing price and volume in 2010.

346

D
RA
FT

10 HW #4B: Aggregation in Pandas

Repeat HW #4A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked.

Answer the following questions using only the syntax discussed in class. If a year is unspecified, please use
the 2010 data and refer to the data dictionary for questions regarding the contents of the data.

Here are the statements that will load the data, note that you will need to change the directory.

Initial Information
import pandas as pd
import numpy as np
df2010 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',

sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls' , 'vol', 'exch'])

df2011 = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. What is the total number of rows in the 2010 database? Return this as an integer.

2. How many unique symbols are there in 2010? Return this as an integer.

3. What is the minimum closing price for a stock when it had a volume greater than 1,000,000 shares
in 2010?

4. Return the average closing price for all stocks from the NYSE in 2010?

5. Return the average closing price for all stocks and the total number of rows by the exchange of each
stock for 2010. Order the results from lowest to highest average closing price. This should return
two rows and three index/value columns (exchange, average closing price and total number of rows).

Main Problems

1. Which symbols have less than 50 rows in 2010?

2. How many symbols have less than 50 rows in 2010?

3. Write a query which returns one row and two columns (DataFrame or Series). The first column
should contain the number of symbols which have less than 50 rows in 2010 and the second column
should have the number of symbols with more than 100 rows in 2010.

347

D
RA
FT

4. Write a query which returns two column and two rows (either series or a DataFrame). The first
column should be equal to “lessThan50” or “moreThan100” and the second column should have the
number of unique symbols which correspond to this condition. In other words, the same numbers as
the previous problem, transposed with an column providing a description.

5. Write a query which returns three rows and two columns (note that one column maybe an index).
One column should contain the average yearly total traded volume for symbols which had (1) more
than 100 trading days (2) less than 50 trading days and (3) between 50 and 100 trading days. The
other column should identify each row and be called “numType.”

6. Write a query which returns three rows and two columns. The first column should contain the average
daily traded volume for symbols which had (1) more than 100 trading days (2) less than 50 trading
days and (3) between 50 and 100 trading days. The other column should identify each row and be
called “numType.”

7. How many of the symbols had a day where the dollar volume (closing price multiplied by number of
shares traded) was greater than 100 million dollars in 2010?

8. What percentage of the symbols had a day where the dollar volume of shares traded was greater
than 100 million dollars in 2010?

348

D
RA
FT

11 HW #5A: Aggregate Functions and Dates

Answer the following questions using only the syntax discussed in class. If a year is unspecified, please use
the 2010 data and refer to the data dictionary for questions regarding the contents of the data.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

The queries below rely on information from the 2010 stock return data.

1. Which day of the week (0,1,2,...) had the largest number of shares traded?

2. Which day of the week (0,1,2,..) has the highest average shares traded?

3. Which day of the week-month (January-Monday, January-Tuesday, etc.) combination had the highest
average return (close - open)? Note that both day of the week and month can be kept as integers.

4. Write a query which returns 3 columns and 5 rows with each row should represent a day of the week.
One column should be the English day of the week (“Monday,”, “Tuesday,” etc.) while the next
column should be equal to the average number of shares traded on that day from stocks that have a
volume traded between 1 million and 2 million shares on that day (“C2”). The final column (“C3”)
should be the average number of shares traded on that day from stocks that had a volume traded
outside of 1 million to 2 million.

5. Write a query which returns the maximum closing price for each symbol in 2010, sorting the results
from from high-to-low closing price.

Main Questions

1. Which quarter in 2010 has the most trading days?5

2. Write a query which returns symbol and a column “DFlag”, which is equal to 1 if the max closing
price in 2010 is larger than 100, 2 if the max closing price in 2010 is between 50 and 100 and 3 if the
max closing price is less than 50. There should be one row per symbol.

3. Write a query which returns the number of distinct symbols of each type of Dflag (from the previous
problem). This should be 3 rows and 2 columns (one of the columns should indicate what each row
means).

4. Write a query which returns the number of distinct symbols of each type of Dflag (from the previous
problems), this should be 3 columns and a single row.

5. Calculate the number of distinct trading days per month in 2010. This should return 12 rows with
2 columns.

6. For each symbol, calculate the difference between the maximum and minimum closing price for
December, 2010. Only include those stocks with 22 observations (there are 22 trading days in
December, 2010).

5Define Q1 as Jan-Mar, Q2 as Apr-Jun, etc.

349

D
RA
FT

7. Calculate the average difference between the maximum and minimum closing price for Tuesdays
in January, 2010 for stocks on NYSE. The max and min should be calculated per-stock and then
averaged. Only include those stocks with 4 observations which fulfill the criteria.6

8. Calculate the average closing price for Tuesday in January 2010 from the NYSE. Only include those
stocks with 4 observations which fulfill the criteria. In other words, calculate the average price for
each stock and then take the average of that number.

9. Calculate the average closing price for all stocks on the NYSE, by month, in 2010. Only include
those stocks which have a closing price greater than $100 in 2011.

10. Calculate the average closing price in 2010 for all stocks (NYSE only) which are “not extreme”. We
define a stock as not extreme if the closing price is less than .1% of the max closing price (for all
stocks) for the entire year. In other words, identify those stocks which are not extreme and then
calculate their average price.

6There are 4 Tuesday trading days in January, 2010.

350

D
RA
FT

12 HW #5B: Aggregate Functions and Dates

Repeat HW #5A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked.

The queries below rely on information from the stock return data. To load the data use the following
commands. Note: these are different than the previous commands because they load retdate
as a date, rather than a string

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

Initial Information
import pandas as pd
import numpy as np

df2010D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

df2011D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

First Five

1. Which day of the week (0,1,2,...) had the largest number of shares traded?

2. Which day of the week (0,1,2,..) has the highest average shares traded?

3. Which day of the week-month (January-Monday, January-Tuesday, etc.) combination had the highest
average return (close - open)? Note that both day of the week and month can be kept as integers.

4. Write a query which returns 3 columns and 5 rows with each row should represent a day of the week.
One column should be the english day of the week (“Monday,”, “Tuesday,” etc.) while the next
column should be equal to the average number of shares traded on that day from stocks that have a
volume traded between 1 million and 2 million shares on that day (“C2”). The final column (“C3”)
should be the average number of shares traded on that day from stocks that had a volume traded
outside of 1 million to 2 million.

5. Write a query which returns the maximum closing price for each symbol in 2010, sorting the results
the final table from from high-to-low closing price.

Main Questions

1. Which quarter in 2010 has the most trading days?7

7Define Q1 as Jan-Mar, Q2 as Apr-Jun, etc.

351

D
RA
FT

2. Write a query which returns symbol and a column “DFlag”, which is equal to 1 if the max closing
price in 2010 is larger than 100, 2 if the max closing price in 2010 is between 50 and 100 and 3 if the
max closing price is less than 50. There should be one row per symbol.

3. Write a query which returns the number of distinct symbols of each type of Dflag (from the previous
problem). This should be 3 rows and 2 columns (one of the columns should indicate what each row
means).

4. Write a query which returns the number of distinct symbols of each type of Dflag (from the previous
problems), this should be 3 columns and a single row.

5. Calculate the number of distinct trading days per month in 2010. This should return 12 rows with
2 columns.

6. For each symbol, calculate the difference between the maximum and minimum closing price for
December, 2010. Only include those stocks with 22 observations (there are 22 trading days in
December, 2010).

7. Calculate the average difference between the maximum and minimum closing price for Tuesdays
in January, 2010 for stocks on NYSE. The max and min should be calculated per-stock and then
averaged. Only include those stocks with 4 observations which fulfill the criteria.8

8. Calculate the average closing price for Tuesday in January 2010 from the NYSE. Only include those
stocks with 4 observations which fulfill the criteria. In other words, calculate the average price for
each stock and then take the average of that number.

9. Calculate the average closing price for all stocks on the NYSE, by month, in 2010. Only include
those stocks which have a closing price greater than $100 in 2011.

10. Calculate the average closing price in 2010 for all stocks (NYSE only) which are “not extreme”. We
define a stock as not extreme if the closing price is less than .1% of the max closing price (for all
stocks) for the entire year. In other words, identify those stocks which are not extreme and then
calculate their average price.

8There are 4 Tuesday trading days in January, 2010.

352

D
RA
FT

13 HW #6A: SQL Joins (I)

The following questions utilize the financial data in the s2010, s2011 and fnd tables. Before beginning the
assignment, please read the data dictionary to better understand the data. When doing so, keep an eye on
data types for different columns as well as table organization.

• If no table information is given, use the 2010 data.

• If the query returns a significant number of rows, please only copy a few rows in your response.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. Using a JOIN, create a dataset which contains symbol, the max closing price for that symbol from
2010 and the max closing price for that symbol from 2011. This should only include those symbols
which are in both 2010 and 2011. Are you sure that both sides are unique? Why?

2. Using a LEFT JOIN, create a dataset which contains the following information: symbol, the last day
it is traded in 2011 and the last day it is traded in 2010. Make sure to include all rows from 2011
and only those matching from 2010. There should be one row per symbol.

3. Using a cross join, create a dataset which contains every possible combination of symbol (in 2010)
and return date (in 2010).

4. Write a query which returns the number of rows in the above query. How does this compare to the
number of rows in the 2010 dataset? Does this make sense?

5. Write a query which has 12 rows and 3 columns. The first column should be Month (1,2,3...,12) the
second column should be the number of rows from that month in 2010 and the third column should
be the number of rows from that month in 2011.

Main Problems

1. Using a LEFT JOIN, count the number of symbols which are in 2010, but not in 2011.

2. For each symbol, return the closing price on the first day that it is traded in 2010.

3. For each symbol, return the closing price on both the first day and last day that it is traded in 2010.

4. Create a dataset which contains 4 columns: the symbol, the retdate, the closing price and the closing
price on the day after. Note that this dataset should only include Monday to Tuesday transitions,
so retdate there should only be one row per-symbol per-Monday in the dataset. Specifically, if there
are 50 trading weeks in a year and assuming that a symbol is traded every day, there would be 50
observations for that symbol

5. By matching the fnd data and the stocks 2010 data create a table which contains three columns
and one row. The columns should represent the number of unique symbols which (a) are in both
datasets, (b) are only in the 2010 dataset and (c) are only in the fnd data. Make sure to ignore all
observations which are missing ticker symbols.

353

D
RA
FT

6. By combining the fnd and the stocks 2010 data, generate a dataset which contains the number of
unique symbols of each of the three types in the previous problem. This time return two columns
and three rows (one of the columns should describe what data is in the row).

7. Create a dataset which is 5 rows by 3 columns. The first column should be DOW, the second column
should be the average closing price of all stocks from 2010 on that day of the week and the third
should be the average price of all stocks from 2011 for that day of the week.

8. We want to divide all stocks by the following criteria: if their max closing price in 2010 was less than
50, between 50 and 100 (inclusive) and more than 100. Return a table which contains the average net
income (from fyear 2010) for each type of stock. Note that net income can be found in the fnd table
and, if there are two net-income values for a particular ticker symbol, take the max. Only include
those symbols in both datasets (fnd and s2010) that do not have a missing net income.

Extra Problems

1. Create a dataset which contains the first day that each symbol is traded in 2010, the last day that
the symbol is traded in 2011 and only includes those symbols which are in both 2010 and 2011.

2. For those symbols which had a closing price larger than $100 anytime in 2010, return the symbol,
first day that it was traded in 2010 and all the dates that it had a closing price larger than $200 in
2010. If the symbol was never above $200, return no rows for it.

3. What are the first and last date listed for each symbol in 2010? Be careful to return this for each
symb.

4. For each symbol that appears anywhere in 2010, calculate the number of missing trading days that
it has in each month in 2010. This should return three columns: symbol, month, number of missing
values.

5. Create a dataset which is 10 rows by 3 columns. The first column should be the year, the second
column should be the day-of-the-week and the third column should be the average closing price of
all stocks for that day-of-the-week. Include both 2010 and 2011.

6. How many cars (total), on an average day, go through each toll plaza in both directions combined
(return a row for each toll plaza)? Make sure to sum up to the day level before computing the
average.

7. Which day-of-the-week (Monday, Tuesday, etc.) has the highest number of cars going through Plaza
#1, both directions combined, with EZ pass? This should be the total number of cars over the entire
time period in the dataset.

8. Which day-of-the-week-plaza combination has the lowest percentage of users cars using the EZ pass
in the outbound direction? In other words, if you look at outbound cars through each plaza, which
day of the week has the lowest percentage of cars using EZ pass. You can compute the percentage
over the entire time period.

9. Calculate the average number of cars going through Plaza #1, outbound, with EZ pass for each
day-of-the-week. This should be a daily average and should return 7 rows.

10. In an average week on Plaza #1 with EZ pass (outbound), what percentage of cars go through each
day? (E.g. basically the above, but this time percent of total).

11. For each plaza, what was the change (percent) in average number of cars on a Monday using EZ-pass
in both directions, between 2015 and 2016? (Calculate the average number of cars for a Monday in
2015 and 2016 and then calculate the percentage change based off of that.)

354

D
RA
FT

12. Calculate, for each hour, plaza and day-of-the-week (so 7 · 24 rows per plaza), the ratio of inbound
to outbound traffic.

13. Using a join, create a dataset with three columns and 7 rows. The first column should be the DOW,
the second column should be the average number of cars, per-day-of-the-week, through toll Plaza #1
in either direction with an EZ pass in 2016 and the final column should be the average number of
cars, per-day-of-the-week, through tool Plaza #2 with an EZ pass in 2015.

14. Create a dataset which contains twenty-four rows and two columns. The first column represents the
hour and the second column represents the max number of EZ pass cars, during that hour, outbound,
through Plaza #1.

15. Create a dataset which contains 24x7 rows and two columns. The first column represents the DOW-
hour combination (you may need to combine two columns using “||” or the concatenate operator)
and the second represents the max number of EZ pass cars, during that hour-day, through Plaza #1
in the outbound direction.

16. Using at least one join, create a dataset which contains twenty-four rows and 4 columns. Each row
should represent an hour, and the first column should be an hour identifier. Column #2 should
contain the maximum number of EZ pass cars, in the inbound direction, through Plaza #1 during
that hour, Column #3 should contain the minimum number of outbound EZ-pass cars, during that
hour, through Plaza #2 and Column #3 should be the maximum number of EZ-pass cars in either
directions combined, during that hour, on Plaza 3.

17. Create a dataset which contains the following columns: hour, day-of-the-week, plaza, the ratio of
inbound to outbound traffic in 2014 and the ratio of inbound to outbound traffic in 2013.

18. For the day with the most traffic (inbound, outbound and both payment types combined), calculate
the ratio of inbound to outbound traffic over the entire dataset (not by plaza), for each hour. Return
three columns, the day-of-the-week of that date, hour and the percent for that hour.

355

D
RA
FT

14 HW #6B: Pandas Joins (I)

Repeat HW #6A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked.

The queries below rely on information from the stock return data. To load the data use the following
commands. Note: these load retdate as a date, rather than a string

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

Initial Information
import pandas as pd
import numpy as np

df2010D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

df2011D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

dfMTA = pd.read_csv('../sql-data/raw_data/mta/MTA_Hourly.tdf', sep='\t',
engine='python', names=['plaza', 'mtadt', 'hr', 'direction', 'vehiclesez',
'vehiclescash'])

dfTrans = pd.read_csv('../sql-data/raw_data/soapData.tdf', sep='\t',
engine='python', names = ['orderid', 'userid', 'trans', 'type', 'local',
'trans_dt', 'units', 'coupon', 'months', 'amt'])

First Five

1. Using a join, create a dataset which contains symbol, the max closing price for that symbol from
2010 and the max closing price for that symbol from 2011. This should only include those symbol
which are in both 2010 and 2011. Are you sure that both sides are unique? Why?

2. Using a LEFT JOIN, create a dataset which contains the following information: symbol, the last day
it is traded in 2011 and the last day it is traded in 2010. Make sure to include all rows from 2011
and only those matching from 2010. There should be one row per symbol.

3. Using a cross join, create a dataset which contains every possible combination of symbol (in 2010)
and return date (in 2010).

4. Write a query which returns the number of rows in the above query. How does this compare to the
number of rows in the 2010 dataset? Does this make sense?

5. Write a query which has 12 rows and 3 columns. The first column should be Month (1,2,3...,12) the

356

D
RA
FT

second column should be the number of rows from that month in 2010 and the third column should
be the number of rows from that month in 2011.

Main Problems

1. Using a LEFT JOIN, count the number of symbols which are in 2010, but not in 2011.

2. For each symbol, return the closing price on the first day that it is traded in 2010.

3. For each symbol, return the closing price on both the first day and last day that it is traded in 2010.

4. Create a dataset which contains 4 columns: the symbol, the retdate, the closing price and the closing
price on the day after. Note that this dataset should only include Monday to Tuesday transitions,
so retdate there should only be one row per-symbol per-Monday in the dataset. Specifically, if there
are 50 trading weeks in a year and assuming that a symbol is traded every day, there would be 50
observations for that symbol

5. By matching the fnd data and the stocks 2010 data create a table which contains three columns
and one row. The columns should represent the number of unique symbols which (a) are in both
datasets, (b) are only in the 2010 dataset and (c) are only in the fnd data. Make sure to ignore all
observations which are missing ticker symbols.

6. By combining the fnd and the stocks 2010 data, generate a dataset which contains the number of
unique symbols of each of the three types in the previous problem. This time return two column and
three rows (one of the columns should describe what data is in the row).

7. Create a dataset which is 5 rows by 3 columns. The first column should be DOW, the second column
should be the average closing price of all stocks from 2010 on that day of the week and the third
should be the average price of all stocks from 2011 for that day of the week.

8. We want to divide all stocks by the following criteria: if their max closing price in 2010 was less than
50, between 50 and 100 (inclusive) and more than 100. Return a table which contains the average net
income (from fyear 2010) for each type of stock. Note that net income can be found in the fnd table
and, if there are two net-income values for a particular ticker symbol, take the max. Only include
those symbols in both datasets (fnd and s2010) and that do not have a missing net income.

Extra Problems

1. Create a dataset which contains the first day that each symbol is traded in 2010, the last day that
the symbol is traded in 2011 and only includes those symbols which are in both 2010 and 2011.

2. For those symbols which had a closing price larger than $100 anytime in 2010, return the symbol,
the first day that it was traded in 2010 and all the dates that it had a closing price larger than $200
in 2010. If the symbol was never above $200, return no rows for it.

3. What are the first and last date listed for each symbol in 2010? Be careful to return this for each
symb.

4. For each symbol that appears anywhere in 2010, calculate the number of missing trading days that
it has in each month in 2010. This should return three columns: symbol, month, number of missing
values.

5. Create a dataset which is 10 rows by 3 columns. The first column should be the year, the second
column should be the day-of-the-week and the third column should be the average closing price of
all stocks for that day-of-the-week. Include both 2010 and 2011.

357

D
RA
FT

15 HW #7A: SQL Joins (II)

Please answer the following questions, making sure to only use the syntax from class.9

Before beginning the assignment make sure that you have indexes applied to the symbol and return date
variables in both stock tables (otherwise the queries will take an eternity). The following commands will
create the indexes necessary to complete the assignment.

create index s2010_symb_retdate on stocks.s2010 (symb, retdate);
create index s2011_symb_retdate on stocks.s2011 (symb, retdate);

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. Write a query which returns the symbol, date, volume and the total volume traded for that stock up
to (but not including) that day’s volume. Only consider 2010 data. Make sure that if there is no
previous volume that the cumulative volume is set to zero and isn’t null.

2. Write a query which returns the number of days that the stock has been traded, cumulatively, in
2010. Specifically, the first time that the stock appears it should be “1”, the second date that it
exists it should be “2”. This should return a table with 3 columns (symb, retdate and cumulative
trading days) and should have the same number of rows as the original s2010 dataset.

3. For each exchange in 2010 return the stock with the highest total traded volume in the year 2010.
This should return two rows (one for each exchange) and 3 columns (exchange name, symbol and
total volume traded for that year)

4. For each exchange in 2010 return the stock with the second highest total traded volume in the year
2010. This should return two rows (one for each exchange) and 3 columns (exchange name, symbol
and total volume traded for that year)

5. Create a dataset which contains the following columns: symbol, date that the symbol first appears
in 2010 and the total volume traded in the first 35 days that the stock is traded in 2010. If a stock
has a first date late in the year, ignore the spill over into 2011.

Main Problems

1. Using the data from 2010, write a query which returns the seven day moving average for each stock’s
closing price. Only look at stocks whose symbols begin with the letter “A”. Note that this should
not be the last seven points, but instead the last seven days, not including the current day.

2. For each stock from 2010, write a query which returns the symbol, the closing price, the return date
and the closing price on the previous day it was traded. Note that you just want to take the price
from the previous row, if the rows are ordered by return date. Also, only do this for stocks that begin
with the letter ‘A’.

3. For each symbol in 2010, return the day(s) where it has its highest volume traded10

9Specifically if you decided to look ahead, analytic functions are not to be used to answer these questions.
10There could be multiple days for a symb.

358

D
RA
FT

4. Using only a single join, for each symbol, return the closing price on the first and last day that the
stock is traded in 2010.

5. How many missing days are there in total? Make sure to only count missing days after a symbol has
been in the data. So if a stock doesn’t appear in the data until February, January does not count as
missing. If a stock leaves the market before the end of the year, you can either count the days past
their exit as missing or as not missing, just be consistent across all stocks.11

6. For each symbol that appears in 2011, calculate the number of missing trading days that it has in
January 2010.

7. Write a query which returns the userid, trans dt, amt, and the total amount the user has spent up
to (but not including) that day’s transaction. Make sure that if there is no previous transaction the
amount is set to zero and isn’t null.

8. Write a query which returns a purchase number for each order. In other words, for each row return
the amount, userid, date and the number of the sale, incrementing from one for each order.

9. For each local in the table, return the most common month of an order.

10. For each local in the table, return the second most common month of an order.

11. Create a dataset which has the following information: (1) userid, (2) date of first transaction and (3)
number of transactions within the first 35 days of their first transaction.

11In other words, if a stock leaves the data it maybe because the stock delisted, in which case the data is not missing.

359

D
RA
FT

16 HW #7B: Pandas Joins (II) [TBD]

NEEDS TO BE REWRITTEN AK

Repeat HW #7A, this time using Pandas. In order to receive full credit, please turn in a document which
is python code containing what would be run to return the data asked.

The queries below rely on information from the stock return data. To load the data use the following
commands. Note: these load retdate as a date, rather than a string

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

Initial Information
import pandas as pd
import numpy as np

df2010D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

df2011D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

dfMTA = pd.read_csv('../sql-data/raw_data/mta/MTA_Hourly.tdf', sep='\t',
engine='python', names=['plaza', 'mtadt', 'hr', 'direction', 'vehiclesez',
'vehiclescash'])

dfTrans = pd.read_csv('../sql-data/raw_data/soapData.tdf', sep='\t',
engine='python', names = ['orderid', 'userid', 'trans', 'type', 'local',
'trans_dt', 'units', 'coupon', 'months', 'amt'])

First Five

1. Write a query which returns the userid, trans dt, amt and the total amount that the user has spent
up to (but not including) that day’s transaction. Make sure that if there is no previous transaction
that the amount is set to zero and isn’t null.

2. Write a query which returns a purchase number for each order. In other words, for each row return
the amount, userid, date and the number of the sale, incrementing from one for each order.

3. For each local in the table, return the most common month of an order.

4. For each local in the table, return the second most common month of an order.

5. Create a dataset which has the following information: (1) userid, (2) date of first transaction and (3)
number of transactions within the first 35 days of their first transaction.

360

D
RA
FT

Main Problems

1. Using the data from 2010, write a query which returns the seven day moving average for each stock’s
closing price. Only look at stocks whose symbols begin with the letter “A”. Note that this should
not be the last seven points, but instead the last seven days, not including the current day.

2. For each stock from 2010, write a query which returns the symbol, the closing price, the return date
and the closing price on the previous day it was traded. Note that you just want to take the price
from the previous row, if the rows are ordered by return date. Also, only do this for stocks that begin
with the letter ’A’.

3. For each symbol in 2010, return the day(s) where it has its highest volume traded12

4. Return the closing price on the first and last day that the stock is traded in 2010.

5. How many missing days are there total? Make sure to only count missing days after a symbol has
been in the data. So if a stock doesn’t appear in the data until February, January does not count as
missing. If a stock leaves the market before the end of the year, you can either count the days past
their exit as missing or as not missing, just be consistent across all stocks.13

6. For each symbol that appears in 2011, calculate the number of missing trading days that it has in
January 2010.

12There could be multiple days for a symb.
13In other words, if a stock leaves the data it maybe because the stock delisted, in which case the data is not missing.

361

D
RA
FT

17 HW #8AO: SQL Window Functions: [TBD]

THIS ONE IS REPLACED AND NEEDS TO BE FIXED

Using only the functions and syntax that we have learned in class, please provide a query to answer the
following questions. If a dataset is not specified, please use the 2010 dataset. Do not create any tables
or views.

Before beginning the assignment, please read the data dictionary to better understand the data. When
doing so, keep an eye on data types for different columns as well as table organization.

• If no year information is provided for a financial question, assume 2010.

• If the query returns a significant number of rows, please only copy a few rows in your response.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. What is the median daily closing price on January 4th, 2010?

2. For stocks in 2010, write a query which creates a dataset containing closing price, symbol, retdate
and the nominal change between yesterday’s closing price and today’s opening price. Ignore holes in
the data, so that if the stock misses a day the change in price is from the last time listed.

3. Write a query which returns five columns: symbol, return date, closing price, the moving average
of the price (covering the last two days it was traded, but not including the current day) and the
difference between that moving average and the current price.

4. Using the FND data and an analytic function, return the number of stocks alphabetically before each
stock (e.g. if “A” was the first company would be 0, AA would be 1, etc.) in 2010. Make sure to only
include each name once. Feel free to include or exclude company names that begin with a number.14

5. Without using an analytic function answer the same question as above.

Main Problems

1. For each stock in 2010, return the largest average daily return ((close - open)/open) by the first letter
of the symbol. In other words, there should be one row for each first letter of the ticker symbol. The
dataset should return (a) the symbol which has the largest, (b) the total number of symbols which
begin with that character and (c) the average daily return for the symbol.

2. Repeat the above, this time without using an analytic function. Make sure that you aren’t joining
on a float as joining on a floating variable will lead to uneven results.

3. For stocks in 2010, write a query which creates a dataset containing closing price, symbol, retdate
and the nominal change between yesterday’s stock (symbol) price and today. If there is a missing
day then the nominal change should be missing (which is different from the above question).

14Comparisons of the form string ≤ string do alphabetical comparison. Also keep in mind that you can join using any
conditional expression.

362

D
RA
FT

4. Return a dataset which contains symbol and the number of trading days that the price is within 10%
of the max price for that year for each stock. For example, if the max price of a symbol is $100, then
return the number of times that price of that stock is ≥ 90.

5. For each symbol return the number of days it took to reach its maximum closing price for that year.
If a stock is not traded on a day, then that should not count toward the total days. Note that there
should be one row per symbol in the final dataset.

6. Repeat the previous question without using any analytic functions.

7. For each stock symbol return the number of days it took to reach its maximum closing price for that
year. If a stock is not traded on a day, then it should count toward the total days.

Extra Problems

1. In the Transaction data, what percentage of users, who start by purchasing a Unit end up Subscribing?

2. What percentage of users, in the transaction data, purchase both a Unit and a subscription?

3. What is the average amount of time between Unit Purchases?

4. Calculate the 25, 50 and 75 percentile of the amount of revenue generated in the first six months
(per user). Only include those users who made their first purchase more than six months ago. Make
sure that this query moves with time: if I run this query next month it should return updated data.

363

D
RA
FT

18 HW #8A: SQL Window Functions

Using only the functions and syntax that we have learned in class, please provide a query to answer the
following questions. If a dataset is not specified, please use the 2010 dataset. Do not create any tables
or views.

Before beginning the assignment, please read the data dictionary to better understand the data. When
doing so, keep an eye on data types for different columns as well as table organization.

• If no year information is provided for a financial question, assume 2010.

• If the query returns a significant number of rows, please only copy a few rows in your response.

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

First Five

1. Write a query which returns, for stocks in 2010, the symbol, the date and the cumulative sum of
traded volume for that stock from the start of the year to that date, including that date.

2. Repeat the above without an analytic function.

3. Write a query which returns, for stocks in 2010, the symbol, the date and the cumulative sum of
traded volume for that stock from the start of the year to that date, not including that date.

4. Repeat the above without an analytic function.

5. Write a query which returns, for the stocks in 2010, the symbol, the date, and the moving average
of the last five days (including the current date) of closing prices for that stock.

Main Problems

1. Write a query which returns, for stocks in 2010, the symbol, the date and the cumulative sum of
traded volume for that stock from the start of the current month, including that date.

2. Repeat the above without an analytic function.

3. Write a query which returns, for stocks in 2010, the symbol, the date, the ratio of that days stock
closing price to the stock’s closing price on the first day that the stock is traded that year (current price

first price)

4. Write a query which returns, for stocks in 2010, the symbol, the date and the difference between the
max closing price that the stock achieves in 2010 and the current day’s closing price.

5. What is the median closing price for all stocks on January 4th, 2010?

6. For stocks in 2010, write a query which returns the closing price, symbol, retdate and the nominal
change between yesterday’s closing price and today’s opening price. Ignore holes in the data, so that
if the stock misses a day the change in price is from the last time listed.

7. Write a query which returns, for stocks in 2010, a set of unique symbols and a column which is the
alphabetical rank (e.g. so “A” should be 1, “AA” should be 2, etc.)

364

D
RA
FT

19 HW #8B: Pandas Window Functions

In order to receive full credit, please turn in a document which is python code containing what would be
run to return the data asked.

The queries below rely on information from the stock return data. To load the data use the following
commands. Note: these load retdate as a date, rather than a string

The best approach to learning from these problems is to complete them using pen and paper, working
by yourself and then using your group to double check your results. The First Five problems provide a
short overview of the core concepts in the assignment, so make sure that you understand them. The Main
Problems section contains questions which range from easy to very difficult. Remember to don’t get stuck!
If a problem is taking a long time or is too difficult, use your group!

Initial Information
import pandas as pd
import numpy as np

df2010D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2010.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

df2011D = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/2011.tdf',
sep='\t', engine='python', names=['symb', 'retdate', 'opn', 'high', 'low',
'cls', 'vol', 'exch'], parse_dates=['retdate'])

dffnd = pd.read_csv('/Users/ncross/git/sqlnotes/newserver/data/fnd.tdf',
sep='\t', engine='python', names=['gvkey', 'datadate', 'fyear', 'indfmr',
'consol', 'popsrc', 'datafmt' , 'tic', 'cusip', 'conm', 'fyr', 'cash', 'dp',
'ebitda', 'emp', 'invt', 'netinc', 'ppent', 'rev' , 'ui', 'cik'])

dfMTA = pd.read_csv('../sql-data/raw_data/mta/MTA_Hourly.tdf', sep='\t',
engine='python', names=['plaza', 'mtadt', 'hr', 'direction', 'vehiclesez',
'vehiclescash'])

dfTrans = pd.read_csv('../sql-data/raw_data/soapData.tdf', sep='\t',
engine='python', names = ['orderid', 'userid', 'trans', 'type', 'local',
'trans_dt', 'units', 'coupon', 'months', 'amt'])

First Five

1. For each stock in 2010, return the original dataset as well as a column (“newcol”) which is the 3 day
moving average of the closing price (making sure to include the current closing price in the average).

2. For each stock in 2010, return the original dataset as well as a column (“newcol”) which is the 3 day
moving average of the closing price (making sure to exclude the current closing price in the average).

3. Calculate the average correlation between closing price and volume. To do this calculate the corre-
lation for each stock and then take the average over all stocks. This should return a single number.

4. For each stock in 2010, calculate the percentage of the historical max closing price, up to (but not
including) that point, that the current closing price is. Note that whenever a new max closing price
is achieved the percent would be greater than 100.

5. Using stack or unstack create a DataFrame which is one row per symbol with columns for each
month in 2010. The values in those columns should be the average closing price.

365

D
RA
FT

Main Problems

1. Using stack or unstack create a DataFrame which is one row per symbol with columns for each
month in 2010. There should be multiple columns for each month, one for the average closing
price, one for the average volume and one for the maximum volume (37 Columns: Symbol, Jan-
Dec for average closing price, Jan-Dec for average volume and Jan-Dec for maximum volume). The
DataFrame returned should not have a row index.

2. Using stack or unstack create a DataFrame which is one row per symbol with 12 columns which
should be the cumulative volume for that month (including that month) over the entire year of 2010.
E.g. This should be the running sum, but then accumulated per month.

3. Using stack or unstack create a DataFrame which is one row per symbol with columns for each
month in 2010 and 2011. The values in those columns should be the average closing price for that
month.

4. For stocks in 2010, write a query which creates a dataset containing closing price, symbol, retdate
and the nominal change between yesterday’s closing price and today’s opening price. Ignore holes in
the data, so that if the stock misses a day the change in price is from the last time listed.

366

D
RA
FT

20 BART Project

The objective of this assignment is to create a Python script which loads the BART data into your local
database. In order to receive full credit on this assignment you will need to write a Python Script which
takes the raw Excel files and loads the “core” ridership data.15

The table that holds the data should have the following form:

CREATE TABLE cls.bart (
mon int
, yr int
, daytype varchar(15)
, start varchar(2)
, term varchar(2)
, riders float

);

Requirements:

• Your code should be callable from a single function. While you can have multiple functions (or use
objects), the entire script should be run via a single command.

• The code should be in a single text file. No notebooks.

• The code should be robust to being run more than once. If the code is run twice in a row, it should
not break, crash or duplicate the data in the database.

• For older time periods the clipper/fastpass data may be broken out, just use the main data and
ignore the clipper data.

• You should assume that the code is going to be run on a clean computer. Any implied file structure
or libraries that need to be present should be removed.

• The overall structure of the program should be as follows:

1. Assume that all of the zip files are in a single directory (dataDir), which is taken as a parameter
in the function.

2. The code should unzip the files into a directory (tmpDir).

3. The code should process the Excel files, extracting necessary data and reshaping it so that it
can be loaded.

4. A table should be created in your database.

5. The clean, reshaped and standardized data should then be copied in.

• Things that you will need to standardize:

– The format for year and month changes over time. Your code should standardize these changes.

– The number of stations changes over time. If a particular file does not have a station, there is
no need to add it.

– The daytypes (“Weekday”, “Saturday” and “Sunday”) change their names throughout the data.
Make sure that they are standardized. You can ignore the phrase “adjustments.” The data was
calculated the same way over the entire time period.

15For more information about the BART data, please look at https://www.bart.gov/about/reports/ridership

367

https://www.bart.gov/about/reports/ridership

D
RA
FT

• You can assume that the schema has already been created, but you will need to handle the table
creation yourself.

• You need to verify that you only load the appropriate files. In other words, make sure to either track
files through the process or delete everything within the temp directory before placing files in it.

• Don’t use Pandas. It’s janky.

• Note that the data in the Excel spreadsheets is presented in a wide format – each column represents
the average exits for a particular station. The target table (“cls.bart”) is long, not wide; the data
will require reshaping before it is copied in.

• The function ProcessBart should be called in the following manner:

ProcessBart(tmpDir, dataDir, SQLConn=None, schema='cls', table='bart')

the parameters of the function:

– tmpDir : Directory where the unzipped files should be stored.

– dataDir : Directory where the zipped files are stored.

– SQLConn: Psycopg2 connection.

– schemaName: The schema where the data should be loaded.

– tableName: The table where the data should be loaded.

• By “core” data, I mean the Weekday, Saturday and Sunday data. Note that in many of the files
there are secondary tables or sheets. For example, in the January 2011 data on the “Weekday OD”
sheet, the only information that should be copied is B3:AR45.

• Think hard about what code can be repeated and what code should be put into loops or turned into
functions. Needlessly repetitive code will be penalized.

Hints:

• Libraries that I used when writing this code:

– Psycopg2

– glob

– xlrd

– zipfile

– os

– shutil

You can use any other library that can be installed via pip.

• Think hard about what needs to be standardized between years. The difficult part of this code is
creating a data structure that allows you to iterate over the years smoothly.

• Please use psycopg2 in order to interface with the database.

• In my code, the create table (using psycopg2) looks like:

368

D
RA
FT

Load into DB
SQLCursor = SQLConn.cursor()
SQLCursor.execute("""
CREATE TABLE %s.%s
(
mon int
, yr int
, daytype varchar(15)
, start varchar(2)
, term varchar(2)
, riders float
);""" %(SchemaName, TableName))
SQLCursor.execute("""COPY %s.%s FROM '%s' CSV;"""

% (SchemaName, TableName, tmpDir + 'toLoad.csv'))
SQLConn.commit()

• Note that I created a CSV file, “toLoad.csv” inside tmpDir to put the formatted and reshaped data.

• Finally, when I grade this code, I am going to download your python script to my personal computer.
I will then append the following to your script and run it.

LCLconnR = psycopg2.connect("dbname='ncross' user='ncross'
host='localhost' password='XXX'")

ProcessBart('\home\ncross\tmp\', '\home\ncross\BART\',
SQLConn=LCLconnR, schema='cls', table='bart')

Assuming that your code runs (and I hope it does), I will then run 3-5 SQL queries on the resulting
data to verify that it loaded completely and correctly.

• I will also be reading over the code itself. While I do not expect you to be Python wizards, I do
expect you to be able to code efficiently. This means using loops, functions and variables to create
well-written code that also contains comments to include readability.

• Please make sure that the code removes files from the temp directory before trying to load or only
works on specific files that you choose. If a file is in that directory that you do not expect it should
not cause your code to fail.

369

D
RA
FT

21 HW #5AO: Info Schema and Price-Volume Relationship [TBD]

First Five

Using the information schema answer the following questions:

1. Write a query which returns the count of data types (int, float, etc.) of each columns in the stocks
schema.

2. Write a query which returns the number of distinct column types in the entire database.

3. Write a query which returns 3 columns: schema name, column data type, and the number of columns
in that schema of that column type.

4. Rewrite the above query in a wide-format. Each row should represent a single schema.

5. Create a pie chart of the above information for the schema “information schema”. Which data format
(wide or long) did you use?

In the following exercise, we will investigate the relationship between the dollar volume of shares traded
and the returns of that company. Exploring the relationship between dollar volume and return:

1. Write a query which returns the return rounded to the nearly thousandth of a percent while dealing
with any data issues. Return the data in hundredths, so if the return is .037123, 3.7 should be
returned. Include the dollar volume of stocks traded that day, rounded to the nearest 1,000. Also,
only take a 1/16 sample using the following where statement:

where md5(permno::varchar(100)) like '0%'

2. Create a scatter plot of your rounded returns vs. the rounded dollar volume.

3. Run simple linear regression on the rounded returns vs. the rounded dollar volume and report the
results. Do you believe that there is a relationship between trading size and dollar volume traded?

4. Recreate the scatter plot making sure to remove days with less than 250 million shares traded and
only include returns between -10 and 10. Did the pattern change?

5. Run simple linear regression on the rounded returns vs. the rounded dollar volume and report the
results for the sample of more than 250 million shares and returns between -10 and 10. Do you
believe that there is a relationship between trading size and volume traded?

6. Using only the SUM, AVG and COUNT aggregate functions, compute the variance of both the
rounded volume and the rounded returns of the sample.

7. The problem below is from the analytic function lecture and should be incorporated in to the LTV
estimate. Write a query which returns the following information. Cohort should be defined monthly.

(a) For each complete month, calculate the percentage revenue generated, per cohort, when com-
pared to the previous month. For example, if Month #2 after first purchase the amount of
revenue generated is equal to $12,755.54 and the amount of money generated in Month #1 after
purchase is equal to $24,885.32 then return 12,755.54

24,885.32 = .51337616

(b) Average this over all the cohorts with complete month data. Be careful to only consider dates
that are complete from both the start and end of the table.

(c) This should return a set of month-over-month multipliers that could be used to estimate the
expected revenue generated from a new cohort. Explain how these numbers could be used to

16A complete month is one that is 100% in the data. For example, if a company launches on January 12, 2017 then January
is not a complete month. Similarly, if today’s date is September 19th, then September is not a complete month.

370

D
RA
FT

estimate the lifetime value of a customer (in their first year). E.g. If a customer generated $1 of
revenue in their first month, what would you do with those multipliers to estimate the lifetime
value?

371

D
RA
FT

372

D
RA
FT

Appendix D

Example Exams

This textbook is used for a variety of different courses and course formats. The exams included in this
appendix reflect this diversity. In order to study from these exams, keep in mind that the amount of time
given and material covered may be different.

373

D
RA
FT

1 2023 CAPP Databases Final A

This exam was given to Master’s level students in the University of Chicago CAPP program in the Spring
of 2023. There were two versions of the exam – this is version “A”.

The following tables contains information about Uber Eats drivers, their deliveries and reviews. Keep in
mind that (a) not all deliveries will have reviews. A delivery can have, at most, one review. Not all drivers
will have deliveries. When a driver first signs up they will not have any deliveries or reviews

• Only use syntax covered in class. Do not create any views.

• Interpret all inequalities as strict unless explicitly stated.

• If there is no specified return format (DataFrame/Series/etc.) than any format will be accepted.

• If you provide more than one answer, the lower of the two scores will be counted.

• Any two columns with the same name can be assumed to match.

• Columns in the drivers table / DataFrame:

– driver id: The ID of the driver (INT, UNIQUE, NOT NULL).

– state: The state that the driver lives in (STRING, NOT NULL).

– age: The age of the driver in years (INT, NOT NULL).

• Columns in the reviews table / DataFrame:

– del id: The ID of the delivery being reviewed (INT, NOT NULL).

– review: The review score on a 1 (worst) to 5 (best) scale (INT, NOT NULL).

• Columns in the delivery table / DataFrame:

– del id: The unique ID associated with the delivery (INT, UNIQUE, NOT NULL).

– del date: The date that the delivery occurred (DATE, NOT NULL).

– driver id: The ID of the driver (INT, NOT NULL).

– car: A flag (1/0) for if the driver used a car to make the delivery (INT, NOT NULL).

– length: The distance that the delivery took, in km (FLOAT, NOT NULL).

driver id state age

1 CA 27
2 MN 37
3 CA 28
4 CA 32

Drivers (1,234 Rows)

del id review

1 5
23 4
35 4
45 1

Reviews (980 Rows)

del id del date driver id car length

1 1-1-2012 45 0 1.25
2 12-23-2012 45 1 23.45
3 7-6-2013 112 1 11.17
4 5-5-2014 1125 0 .75

Deliveries (14,365 Rows)

SQL Section

1. Write a query which returns the 7 oldest drivers (driver id only) from the state of Michigan (“MI”).

374

D
RA
FT

select driver_id
from drivers
where state = 'MI'
order by age desc
limit 7

2. Write a query which returns three columns: (1) the state, (2) the total number of drivers (count)
from that state (only including drivers who have one or more deliveries) and (3) the total number of
deliveries (count) from that state. This should return one row per state.

select
drivers.state
, count(distinct drivers.driver_id)
, count(deliveries.del_id)

from
drivers

join
deliveries

using(driver_id)
group by state

3. Write a query which returns one row per delivery and four columns. The first column should be the
state of the driver, the second should be the driver id, the third should be del id and the fourth
should be the total length that the driver has travelled up to and including that delivery (cumulative
sum of length). Make sure that the cumulative sum is calculated by the date of the delivery from
earliest to latest. If a driver does not have any deliveries they should not be included in the results.

select
driver_id
, del_id
, state
, sum(length) over(

partition by driver_id
order by del_dt asc
rows between unbounded preceding and current row
) as cum_sum

from
drivers

join
deliveries

using(driver_id)

4. Write a query which returns two rows and two columns. The first column should be state and the
second should be the number of 5-star reviews for deliveries from that state. Only include Michigan
(“MI”) and Pennsylvania (“PA”).

375

D
RA
FT

select
state,
count(case when review = 5 then 1 else null end) as num_five_stars

from
(select * from drivers where state in ('MI', 'PA')) as lhs

left join
deliveries
using(driver_id)

left join
review
using(del_id)

group by state

5. We want to return the average length of deliveries depending on if the driver used a car or not. Write
a query which returns two rows and two columns. The first column should be if the delivery person
used a car or not (the car column 1/0 flag) and the second column should be the average length of
a delivery with that particular flag value. Only include those observations from the year 2012.

select
car,
avg(length)

from
deliveries

where
date_part('year', del_date) = 2012

group by 1

6. Please return one row and two columns. The first column should be the average length of deliveries
when a car is used (car = 1) and the second column should be the average length of a delivery when
a car is not used (car = 0). We want to calculate this on all deliveries from February in any year.
Note that this is similar to the last problem, but the data shape and date filters are different.

select
avg(case when car = 0 then length else null end) as car_0_avg
, avg(case when car = 1 then length else null end) as car_1_avg

from
deliveries

where
date_part('month', del_date) = 2;

7. What state (state only) has the most drivers?

select state
from drivers
group by 1
order by count(1) desc
limit 1;

8. What was the longest (by length) non-car (car = 0) delivery (del id only)?

376

D
RA
FT

select
del_id

from
deliveries

where car = 0
order by length desc
limit 1;

9. We call drivers who have ever done a delivery of more than 60 km a “long-driver”. What is the
average review score for “long-drivers”? This should include all deliveries from “long-drivers”, even
those less than 60 km. This should return only a single row and column.

select
avg(review)

from
deliveries

left join
reviews

using(del_id)
where

driver_id in (select distinct driver_id from deliveries where length > 60)

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that DataFrames named drivers, deliveries and reviews are already loaded. Unless otherwise specified you
may return either a Series or DataFrame.

1. Return a DataFrame which has two columns and a row for each state. The first column should be
the state and the second should be the number of deliveries completed by drivers from that state.

pd.merge(drivers, deliveries, on='did', how='left')
.groupby('state', as_index=False)
.agg({'del_id' : ['count']})

-- Since this is number of jobs it could be inner or left or outer join

2. Return a DataFrame with two rows and two columns. The first column should be a flag which
takes one of two values: “LT10” and “MT15”. The second column should be the average review for
deliveries which are (strictly) “Less Than 10 km” and “More Than 15 km” , respectively. In other
words, one row should contain “LT10” and the average review for deliveries which are less than 10
km and the other row should contain “MT15” and the average review for deliveries which are more
than 15 km.

377

D
RA
FT

mrg = pd.merge(deliveries, reviews, on='del_id', how='inner')

mrg = (mrg
.loc[(mrg.loc[:, 'length'] < 10) | (mrg.loc[:, 'length'] > 15), :]
)

mrg.loc[:, 'flag'] = 'LT10'
mrg.loc[(mrg.loc[:, 'length'] >15), 'flag'] = 'MT15'

mrg.groupby('flag', as_index=False).agg({'review' : ['mean']})

3. We call drivers who have ever done a delivery of more than 60 km a “long-driver”. What is the
average review score for “long-drivers”? This should include all deliveries from “long-drivers”, even
those less than 60 km. This should return a single value (can be in a DataFrame, in a Series or as a
number).

driver_id_lst = deliveries.loc[(deliveries.loc[:, 'length'] > 60), 'driver_id'].drop_duplicates()

mrg = pd.merge(reviews, deliveries, on='del_id', how='inner')
mrg.loc[(mrg.loc[:, 'driver_id'].isin(driver_id_lst), 'review'].mean()

4. What was the longest (by length) non-car (car = 0) delivery (del id only)?

deliveries.loc[(deliveries.loc[:, 'car'] == 0), :].nlargest(1,'length').loc[:, 'del_id']

OR

(deliveries
.loc[(deliveries.loc[:, 'car'] == 0), :]
.sort_values('length', ascending=False)
.loc[:, 'del_id']

)

5. Which year had the largest number of deliveries (count)?

(deliveries
.assign(yr = deliveries.loc[:, 'del_date'].dt.year)
.groupby(yr, as_index=False)
.agg({'del_id' : ['count'])
.nlargest(1, ('del_id', 'count'))
.loc[:, 'yr']

)

6. How many drivers are from California (“CA”)?

drivers.loc[(drivers.loc[:, 'state'] == 'CA'), :].shape[0]

Lots of ways to do this one.

7. Which date (del date) had the largest number of 3-star deliveries (count)?

378

D
RA
FT

mrg = pd.merge(deliveries, reviews, how='left', on='del_id')

(mrg
.loc[(mrg.loc[:, 'review'] == 3), :]
.groupby('del_date', as_index=False)
.agg({'del_id' : ['count']})
.nlargest(1, ('del_id', 'count'))
.loc[:, 'del_date']

)

8. Return all drivers (driver id only) from Texas (“TX”) who are 32 years old as a DataFrame.

drivers.loc[(drivers.loc[:, 'state'] == 'CA') & (drivers.loc[:, 'age'] == 32), ['driver_id']]

379

D
RA
FT

2 2023 CAPP Databases Final B

This exam was given to Master’s level students in the University of Chicago CAPP program in the Spring
of 2023. There were two versions of the exam – this is version “B”.

The following tables contains information about a large painting company. The company has many painters
who do jobs and then get reviews on those jobs. A job can, at most, have one review. Not all painters
will have jobs (when they first start there is some time before they are assigned a job). A painter can have
multiple jobs as most jobs last only a day or two and every job will be in the database.

• Only use syntax covered in class. Do not create any views.

• Interpret all inequalities as strict unless explicitly stated.

• If there is no specified return format (DataFrame/Series/etc.) than any format will be accepted.

• If you provide more than one answer, the lower of the two scores will be counted.

• Any two columns with the same name can be assumed to match.

• Columns in the painters table / DataFrame:

– painter id: The ID of the painter (INT, UNIQUE, NOT NULL).

– state: The state that the painter works in (STRING, NOT NULL).

– work exp: The number of years of work experience (INT, NOT NULL).

• Columns in the jobs table / DataFrame:

– job id: The unique ID associated with the job (INT, UNIQUE, NOT NULL).

– job date: The date that the job occurred (DATE, NOT NULL).

– painter id: The ID of the painter (INT, NOT NULL).

– sprayer: A flag (1/0) for if the painter used a sprayer or not (INT, NOT NULL).

– paint: The amount of paint used, in gallons (FLOAT, NOT NULL).

• Columns in the reviews table / DataFrame:

– job id: The ID of the job being reviewed (INT, NOT NULL).

– review: The review score on a 1 (worst) to 5 (best) scale (INT, NOT NULL)

painter id state work exp

1 CA 0
2 MN 12
3 CA 4
4 CA 11

Painters (1,234 Rows)

job id job date painter id sprayer paint

1 1-1-2012 45 0 1.25
2 12-23-2012 45 1 23.5
3 7-6-2013 112 1 11.25
4 5-5-2014 1125 0 .75

Jobs (14,365 Rows)

job id review

1 5
23 4
35 4
45 1

Reviews (980 Rows)

SQL Section

1. Write a query which returns the 11 painters (painter id) with the most experience (largest work exp)
from Hawaii (“HI”).

380

D
RA
FT

select painter_id
from painters
where state = 'HI'
order by work_exp desc
limit 11

2. Write a query which returns three columns: (1) the state, (2) the total number of painters (count)
from that state (only including painters who have one or more jobs) and (3) the total number of jobs
(count) from that state. This should return one row per state.

select
state
, count(distinct painters.painter_id)
, count(jobs.job_id)

from
painters

join
jobs

using(painter_id)
group by state

3. Write a query which returns one row per job and four columns. The first column should be the state
of the painter, the second should be the painter id, the third should be job id and the fourth should
be the total amount of paint that the painter has used up to and including that job (cumulative sum
of paint). Make sure that the cumulative sum is calculated by the date of the job from earliest to
latest. If a painter does not have any jobs they should not be included in the results.

select
painter_id
, job_id
, state
, sum(paint) over(

partition by painter_id
order by job_dt asc
rows between unbounded preceding and current row
) as cum_sum

from
painters

join
jobs

using(painter_id)

4. Write a query which returns two rows and two columns. The first column should be state and the
second should be the number of 5-star reviews for jobs from that state. Only include Alaska (“AK”)
and Hawaii (“HI”).

381

D
RA
FT

select
state,
count(case when review = 5 then 1 else null end) as num_five_stars

from
(select * from painters where state in ('AK', 'HI')) as lhs

left join
jobs
using(painter_id)

left join
review
using(job_id)

group by state;

5. We want to return the average amount of paint used depending on if the painter used a sprayer or
not. Write a query which return two rows and two columns. The first should be if the painter used a
sprayer or not (the sprayer column 1/0 flag) and the second should be the average amount of paint
used. Only include those observations from the year 2014.

select
spray,
avg(paint)

from
jobs

where
date_part('year', del_date) = 2014

group by 1

6. Please return one row with two columns. The first column should be the average amount of paint
used when a sprayer is used (sprayer = 1) and the second column should be the average amount of
paint used if a sprayer is not used (sprayer = 0). We want to calculate this on all jobs from July
in any year. Note that this is similar to the last problem, but the data shape and date filters are
different.

select
avg(case when sprayer = 0 then paint else null end) as spray_0_avg
, avg(case when sprayer = 1 then paint else null end) as spray_1_avg

from
jobs

where
date_part('month', del_date) = 7;

7. What state (state only) has the most painters?

select state
from painters
group by 1
order by count(1) desc
limit 1;

8. What was the largest (used the most paint) non-sprayer (sprayer = 0) paint job? Return the job id
only.

382

D
RA
FT

select
job_id

from
jobs

where sprayer = 0
order by paint desc
limit 1;

9. We call painters who have ever done a job of more than 25 gallons “large-scale” painters. What is the
average review for “large-scale” painters? This should include all jobs from “large-scale” painters,
even those jobs which are less 25 gallons. This should return only a single row and column.

select
avg(review)

from
jobs

left join
reviews

using(job_id)
where

painter_id in (select distinct painter_id from jobs where paint > 25)

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that DataFrames named painters, jobs and reviews are already loaded. Unless otherwise specified you may
return either a Series or DataFrame.

1. Return a DataFrame which has two columns and a row for each state. The first column should be
the state and the second should be the number of jobs completed by painters from that state.

pd.merge(painters, jobs, on='painter_id', how='left')
.groupby('state', as_index=False)
.agg({'job_id' : ['count']})

-- Since this is number of jobs it could be inner or left or outer join

2. Return a DataFrame with two rows and two columns. The first column should be a flag which takes
one of two values: “less3” and “greater20”. The second column should be the average review for
jobs which are (strictly) “less than 3 gallons” and “greater than 20 gallons” , respectively. In other
words, one row should contain “Less3” and the average review for jobs which are less than 3 gallons
and the other row should contain “greater20” and the average review for jobs which are more than
20 gallons.

383

D
RA
FT

mrg = pd.merge(jobs, reviews, on='job_id', how='inner')

mrg = (mrg
.loc[(mrg.loc[:, 'paint'] < 3) | (mrg.loc[:, 'length'] > 20), :]
)

mrg.loc[:, 'flag'] = 'less3'
mrg.loc[(mrg.loc[:, 'paint'] > 20), 'flag'] = 'greater20'

mrg.groupby('flag', as_index=False).agg({'review' : ['mean']})

3. We call painters who have ever done a job of more than 25 gallons “large-scale” painters. What is
the average review for “large-scale painters? This should include all jobs from “large-scale” painters,
even those jobs which are less 25 gallons. This should return a single value (can be in a DataFrame,
in a Series or as a number).

painter_id_list = jobs.loc[(jobs.loc[:, 'paint'] > 25), 'driver_id'].drop_duplicates()

mrg = pd.merge(reviews, jobs, on='driver_id', how='inner')
mrg.loc[(mrg.loc[:, 'painter_id'].isin(painter_id_list), 'review'].mean()

4. What was the largest (most paint used) non-spray (sprayer = 0) job (job id only)?

jobs.loc[(jobs.loc[:, 'sprayer'] == 0), :].nlargest(1,'paint').loc[:, 'job_id']

OR

(job
.loc[(job.loc[:, 'sprayer'] == 0), :]
.sort_values('paint', ascending=False)
.loc[:, 'job_id']

)

5. Which year had the largest number of jobs (count)?

(job
.assign(yr = job.loc[:, 'job_date'].dt.year)
.groupby(yr, as_index=False)
.agg({'job_id' : ['count'])
.nlargest(1, ('job_id', 'count'))
.loc[:, 'yr']

)

6. How many painters are from New Mexico (“NM”)?

painters.loc[(painters.loc[:, 'state'] == 'CA'), :].shape[0]

Lots of ways to do this one.

7. Which date (job date) had the largest number of 2-star jobs (count)?

384

D
RA
FT

mrg = pd.merge(jobs, reviews, how='left', on='job_id')

(mrg
.loc[(mrg.loc[:, 'review'] == 2), :]
.groupby('job_date', as_index=False)
.agg({'job_id' : ['count']})
.nlargest(1, ('job_id', 'count'))
.loc[:, 'job_date']

)

8. Return all painters (painter id only) from California (“CA”) who have 12 years of experience as a
DataFrame.

painters.loc[(painters.loc[:, 'state'] == 'CA') & (painters.loc[:, 'age'] == 32), ['painter_id']]

385

D
RA
FT

3 2023 CAPP Databases Midterm A

This exam was given to Master’s level students in the University of Chicago CAPP program in the Spring
of 2023. There were two versions of the exam – this is version “A”.

The following table contains information about campers at a camp. You can assume each name uniquely
defines a camper and that a camper only appears once in the table.

• name: The name of the camper (string, NOT NULL).

• age: The camper’s age, in years (integer, NOT NULL).

• hgt: The height of the camper (in centimeters) (float, NOT NULL).

• state: The state that the camper is from (string, NOT NULL).

• program: The specific program (elective) that the camper choose. You can assume this is all lower
case (string, NOT NULL).

• amt paid: The amount they paid to attend camp (float, NOT NULL).

• allergy: If a camper has a food allergy (if Null that means no allergy). You can assume this is all
lower case. There will be only a SINGLE allergy listed (string, HAS NULLS).

• The name of the table / DataFrame is camper. No need to use a schema or load the DataFrame.

• Only use syntax covered in class.

• Interpret all inequalities as strict unless explicitly stated.

Figure D.1: camper Table: 12,345 Rows

name age hgt state program amt paid allergy

Ringly Roberson 7 121.0 NY basketball 987.54
Crash Bandicoot 11 144.5 MS basket-weaving 1128.75 peanuts

Alligator Reynolds 8 129.0 PA skateboarding 585.46

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Using SQL, write a query which returns the names (name only) of the top-8 shortest campers who
are 10 years old.

SELECT
name

FROM
campers

where age = 10
order by hgt asc limit 8;

2. Using SQL, write a query which returns all campers (name only) who are younger than 10 years
old and are either from New Jersey (‘NJ’) or Wyoming (‘WY’). Only include those campers who do
NOT have a food allergy.

386

D
RA
FT

select name from campers where
state in ('NY', 'AL')
and age < 10
and allergy is null;

3. Write an SQL query which returns the number of campers from each state who have food allergies.
This should be two columns: one with the state and the other with the number of campers from that
state who have food allergies.

SELECT
state, count(1) as ct

from
campers

where injury is not null
group by 1;

4. Write an SQL query which returns all rows and columns for campers who are taking “basketball” as
their program (you can assume that all programs are lowercase). Sort them from tallest to shortest.

select * from campers
where program = 'basketball'
order by hgt desc;

5. We define an “allergy impacted” program as one with 10% (or more) of the campers in that program
having a food allergy or any kind. Write an SQL query which returns a list of programs which are
“allergy impacted”. This should return 1 column with a list of ”allergy impacted” programs.

select program from
(select program

, sum(case when allergy is not null then 1 else 0 end)::float / sum(1) as rat
from campers
group by 1) as innerQ

where rat >= .1

6. We calculate the age-adjusted height (“AAH”) by taking a campers height and dividing it by their
age squared (height

age2
). Write a query which returns all rows and three columns: age-adjusted height,

name and program.

select hgt /age / age as aah, name, program
from campers;

7. Using SQL, write a query which returns three columns: name, program, and AAH Flag. AAH Flag
should be equal to 0 if the AAH is less than or equal to 1, 1 if the AAH is greater than 1 and less
than or equal to 3 and 2 otherwise. AAH is defined in the previous problem.

387

D
RA
FT

select
name, program
, case

when hgt / age / age <= 1 then 0
when hgt / age / age <= 3 then 1
else 2 end as AAH_Flag

from
campers;

8. If a person’s AAH is greater than or equal to 3 they are defined as “tall”. Write a query which returns
the percentage of campers of each program who are tall. This should have two columns: program
and percentage of the campers in that program who are tall.

select
program,
sum(case when hgt / age / age >= 3 then 1 else 0 end)::float / count(1) as pctTall

from
campers

group by 1;

9. Using SQL, write a query which returns one row and two columns. The first column should be
the number of campers who are 10 years old (exactly) and signed up for the “basketball” program
(call this column bb10). The second column should be the number of campers who are 7 years old
(exactly) who are signed up for the “skateboarding” program (call this column sb7). You can assume
that all programs are lower case.

select
sum(case when program = 'basketball' and age = 10 then 1 else 0 end) as bb10
, sum(case when program = 'skateboarding' and age = 7 then 1 else 0 end) as sb7

from campers;

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named campers is already loaded. If a specific output is not specified you can return
anything (DataFrame/Series/List/Array/etc.)

1. Using Pandas, return the name (as a Series) of the top-8 shortest campers who are 10 years old.

campers.loc[(campers.loc[:, 'age'] == 10), :].nsmallest(8, 'hgt').loc[:, 'name']

OR:

(campers
.loc[(campers.loc[:, 'age']== 10), :]
.sort_values('hgt', ascending=True)
.head(8)
.loc[:, 'name']

)

2. Using Pandas, return a DataFrame with two columns: name and state. The dataset should only
contain campers that are either (a) over 10 years and from Virginia (“VA”) or (b) under 8 years old
and from Michigan (“MI”).

388

D
RA
FT

campers.loc[((campers.loc[:, 'age'] > 10) & (campers.loc[:, 'state'] == 'VA))
| ((campers.loc[:, 'age'] < 8) & (campers.loc[:, 'state'] == 'MI'))
, ['name', 'state']]

3. Using Pandas, return a DataFrame which contains all campers (name only) who are younger than
10 years old and are either from New Jersey (‘NJ’) or Wyoming (‘WY’). Only include those campers
who do NOT have a food allergy.

campers.loc[(campers.loc[:, 'age'] < 10)
& (campers.loc[:, 'allergies'].isna())
& (campers.loc[:, 'state'].isin(['AL', 'NY']))
, ['name']]

4. Using Pandas, return all programs (this should be without duplicates) which have a camper who has
an allergy to “peanuts”. You can assume that all allergies in the table are lower case.

campers.loc[(campers.loc[:, 'allergy'] == 'peanuts'), 'program'].unique()

5. Return all rows and columns for campers who are taking “basketball” as their program (you can
assume that all programs are lower case). Sort the resulting DataFrame first by state (alphabetically)
and then, within state, from tallest to shortest.

(campers.loc[(campers.loc[:, 'program'] == 'basketball'), :]
.sort_values(['state', 'hgt'], ascending=[True, False])
)

6. Please return a DataFrame which has all the original data and adds a column called “AAH” which
is the age-adjusted-height (this is height divided by age squared, as in the previous problems).

campers.loc[:, 'aah'] = campers.loc[:, 'hgt'] / campers.loc[:, 'age'] / campers.loc[:, 'age']

7. Please return a DataFrame which has all the original data as well as adds a column called “hgt flag”
which is equal to 0 if the camper is greater than or equal to 140cm, 1 if they are greater than or
equal to 110 and less than 140 and 2 otherwise.

campers.loc[:, 'hgt_flag'] = 2
campers.loc[(campers.loc[:, 'hgt'] >= 140), 'hgt_flag'] = 0
campers.loc[(campers.loc[:, 'hgt'] >= 110) & (campers.loc[:, 'hgt'] < 140), 'hgt_flag'] = 0

8. There was an error and students who were 10 years old all had their height recorded as 10 centimeters
too high. Please return an updated version of the campers DataFrame which has this error fixed.
Specifically the DataFrame should have all rows and columns, but the hgt column should have this
error fixed.

campers.loc[(campers.loc[:, 'age'] == 10), 'hgt'] = campers.loc[(campers.loc[:, 'age'] == 10), 'hgt'] -10

389

D
RA
FT

4 2023 CAPP Databases Midterm B

This exam was given to Master’s level students in the University of Chicago CAPP program in the Spring
of 2023. There were two versions of the exam – this is version “B”.

The following table contains information about workers applying to a temp agency for data entry positions.
You can assume that each name uniquely defines a person and that a person only appears once in the
table.

• name: The name of the person (string, NOT NULL).

• exp: Years of experience (integer, NOT NULL).

• wpm: The number of words per minute (wpm) the person types (float, NOT NULL).

• state: The state that the worker is from (string, NOT NULL).

• degree: Highest educational attainment. You can assume this is all lower case (string, NOT NULL).

• wage: Preferred hourly wage (float, NOT NULL).

• certificate: If the person has a special certificate, such as for dealing with health care or bank data.
If Null, this means that the person has no certificate. You can assume this is all lower case. A person
can, AT MOST, have a single certificate (string, HAS NULLS).

• The name of the table / DataFrame is agency. No need to use a schema or load the DataFrame.

• Only use syntax covered in class.

• Interpret all inequalities as strict unless explicitly stated.

Figure D.2: agency Table: 12,345 Rows

name exp wpm state degree wage certificate

Ringly Roberson 7 68.5 NY high-school 18.00
Crash Bandicoot 14 88.0 MS ba 22.00 healthcare

Alligator Reynolds 4 72.25 PA ms 17.5

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Using SQL, write a query which returns the names (name only) of the 6 slowest typers (smallest
wpm) who are from Pennsylvania (“PA”).

SELECT
name

FROM
agency

where state = 'PA'
order by wpm desc
limit 6;

390

D
RA
FT

2. Using SQL, write a query which returns all workers (name and state) who have less than 10 years of
experience, have no certificate and are either from Idaho (“ID”) or California (“CA”).

select name, state from agency where
state in ('ID', 'CA')
and exp < 10
and certificate is null.

3. Write an SQL query which returns the number of workers from each state who have a certificate.
This should be two columns: one with the state and the other with the number of workers from that
state who have a certificate.

SELECT
state, count(1) as ct

from
agency

where certificate is not null
group by 1;

4. Write an SQL query which returns all rows and columns for workers whose degree is equal to “high-
school”. You can assume that all degrees are lower case. Sort the data by words per minute from
highest to lowest.

select * from agency
where degree = 'high-school'
order by wpm desc;

5. We are analyzing degrees and certificates. We want to figure out which degrees have more than 20%
of their workers with a certificate. Write an SQL query which returns one column. In this column
should be a list of degrees where more than 20% of the workers with that degree have a certificate.

select degree from
(select degree

, sum(case when certificate is not null then 1 else 0 end)::float / sum(1) as rat
from agency
group by 1) as innerQ

where rat >= .2

6. We calculate the dollar-adjusted wpm (“DAWPM”) by taking a worker’s WPM, squaring it and

dividing it by their wage (in pennies) (wpm2

100·wage). Write a query which returns three columns: name,
degree and the DAWPM.

select (wpm * wpm) / (100 * wage) as DAWPM, name, degree
from agency;

7. Write a query which returns three columns: name, degree, and DAWPM Flag. DAWPM Flag should
be equal to 0 if the DAWPM is less than or equal to 3, 1 if the DAWPM is greater than 3 and less
than or equal to 10 and 2 otherwise. DAWPM is defined in the previous problem.

391

D
RA
FT

select
name, degree
, case

when (wpm * wpm) / (100 * wage) <= 3 then 0
when (wpm * wpm) / (100 * wage) <= 10 then 1
else 2 end as DAWPM_Flag

from
agency;

8. If a person’s DAWPM is greater than or equal to 3 they are defined as “hyper-efficient”. Write a
query which returns the percentage of workers of each degree who are hyper-efficient. This should
have two columns: degree and percentage of the workers with that degree who are hyper-efficient.

select
degree,
sum(case when (wpm * wpm) / (100 * wage) >= 3 then 1 else 0 end)::float / count(1) as pctEff

from
agency

group by 1;

9. Using SQL, write a query which returns one row and two columns. The first column should be the
number of workers who have exactly 3 years experience and have a “ba” degree (call this column
ba3). The second column should be the number of workers who have exactly 7 years of experience
and have an “ms” degree (call this column ms7).

select
sum(case when degree = 'ba' and exp = 3 then 1 else 0 end) as ba3
, sum(case when degree = 'ms' and exp = 7 then 1 else 0 end) as ms7

from agency;

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named agency is already loaded. If a specific output is not specified you can return
anything (DataFrame/Series/List/Array/etc.)

1. Using Pandas, return the name (as a Series) of the top 6 fastest typers (largest wpm) who have 3
years of work experience.

agency.loc[(agency.loc[:, 'exp'] == 3), :].nlargest(6, wpm).loc[:, 'name']

OR:

(agency
.loc[(agency.loc[:, 'exp'] == 3), :]
.sort_values('wpm', ascending=False)
.head(6)
.loc[:, 'name']

)

2. Using Pandas, return a DataFrame with two columns: name and state. The dataset should only
contain workers that are either (a) over 10 years experience and from Georgia (“GA”) or (b) under

392

D
RA
FT

8 years experience and from Nevada (“NV”).

agency.loc[((agency.loc[:, 'exp'] > 10) & (agency.loc[:, 'state'] == 'GA))
| ((agency.loc[:, 'exp'] < 8) & (agency.loc[:, 'state'] == 'NV'))
, ['name', 'state']]

3. Using Pandas, return a DataFrame which contains all workers (name only) who have less than 9
years experience and are either from New Mexico (‘NM’) or Texas (‘TX’). Only include those workers
who have a certificate (any certificate).

agency.loc[(agency.loc[:, 'exp'] < 9)
& ˜(agency.loc[:, 'certificate'].isna())
& (agency.loc[:, 'state'].isin(['NM', 'TX']))
, ['name']]

4. Using Pandas, return all states (this should be without duplicates) which have a worker with a
“healthcare” certificate. You can assume that all certificate names are lower case.

agency.loc[(agency.loc[:, 'certificate'] == 'healthcare'), 'state'].unique()

5. Return all rows and columns for workers who have a “doctorate” degree (you can assume that all
degrees are lower case). Sort the resulting DataFrame first by state (alphabetically) and then, within
state, from fastest to slowest wpm.

(agency.loc[(agency.loc[:, 'degree'] == 'doctorate'), :]
.sort_values(['state', 'wpm'], ascending=[True, False])
)

6. Please return a DataFrame which has all the original data and adds a column called “DAWPM”
which is the dollar-adjusted words per minute (as in the other problems it is defined as words per

minute squared divided by wages in pennies: wpm2

100·wage).

agency.loc[:, 'dawpm'] = (agency.loc[:, 'wpm'] * agency.loc[:, 'wpm']) / (100.0 * agency.loc[:, 'wage'])

7. Please return a DataFrame which has all the original data as well as adds a column called “exp flag”
which is equal to 0 if the worker has less than 10 years experience, 1 if they have greater than or
equal to 10 years and less than 20 years experience and 2 otherwise.

agency.loc[:, 'exp_flag'] = 0
agency.loc[(agency.loc[:, 'exp'] >= 10) & (agency.loc[:, 'exp'] < 20), 'exp_flag'] = 1
agency.loc[(agency.loc[:, 'exp'] > 20), 'exp_flag'] = 2

8. There was an error and workers from Maryland (“MD”) had their WPM recorded as 5 too large.
Please return an updated DataFrame which has this error fixed. Specifically the DataFrame should
have all rows and columns, but the wpm column should have this error fixed.

agency.loc[(agency.loc[:, 'state'] == 'MD'), 'wpm'] = agency.loc[(agency.loc[:, 'state'] == 'MD'), 'wpm'] - 5

393

D
RA
FT

5 2017 SQL Final

This exam was given at the masters level in 2017 for a course just covering SQL. Students had two hours
to complete it.

Use the following tables when answering the questions. The tables below consist of information from a
manufacturing company’s internal database system. This company makes children’s toys by assembling
parts into items.

• Columns with the same name can be assumed to be the same.

• The company takes parts and turns them into items which are then sold.

• Unless stated above, all values are not null.

• Parts table:

– PID: The ID for a particular part. (int)

– Price: The cost associated with the part. (float)

– Desc: A short part description. (string)

– You can assume that PID is unique to each row.

• Item table:

– IID: The Item ID for a particular item. (int)

– Desc: A short item description. (string)

– TPlus: This is a 1 or 0, depending on if the toy is designed for children who are “Twelve Plus”
years old. (int)

– You can assume that IID is unique to each row.

• Assembly Table:

– This table contains the “recipe” for making each item. It is a map between the parts and the
items.

– IID: This is the item ID of the item that is being assembled. (int)

– PID: This is the PID of the part that is going into the item. (int)

– NoPart: This is the quantity of each part that is required to make the item. (int)

• Sales Table:

– This table contains information regarding the company’s sales.

– IID: This is the item ID for the item sold. (int)

– Rev: This is the amount that the item was sold for. (float)

– CustID: This is the ID for the customer. (int)

– SalesID: This is the ID of the salesperson. (int)

– DT: This is the date that the sales took place. (date)

• SP Table:

– This table contains information regarding the salespeople in the company.

394

D
RA
FT

– Each row represents a salesperson.

– SalesID: This the ID of the salesperson. (int)

– ST: This is the state that the salesperson lives. If a state is NULL, that means the salesperson
lives internationally. (string)

– Name: This is the salesperson’s name.

– Bonus: This is equal to “H” or “L” for “High” or “Low” bonus structure. (string)

– You can assume that SalesID is unique to each row.

Table D.1: Parts Table, 4,525 Rows

PID Price Desc

1 11.99 Plastic Box (11 x 11)
2 12.85 8” Wheel
3 127.85 4” dowel

Table D.2: Item Table, 525 Rows

IID Desc TPlus

1 Small Wagon 0
2 Children’s playhouse 0
3 Plastic Truck 1

Table D.3: Assembly Table, 15,225 Rows

IID PID NoPart

1 2 4
1 12 1
1 8 2

Table D.4: Sales Table, 45,258 Rows

IID Rev CustID SalesID Dt

12 65.73 1 12 01-03-2011
12 75.73 3 12 02-03-2011
48 265.04 2 17 01-05-2011
92 554.36 85 8 08-27-2011
115 18.18 92 22 08-11-2011

Table D.5: SP Table, 35 Rows

SalesID ST Name Bonus

1 CA Eldon Tyrell H
2 PA J.F. Sebastian L
3 Roy Batty L
4 CA Rick Deckard H

395

D
RA
FT

For the following questions write a query that returns the answer and ONLY the answer. All questions
should be answered with a single SQL query, unless stated otherwise.

1. What are the top five salesperson (SalesID) in terms of number of items sold?

select SalesID
from sales
group by 1
order by sum(1) desc
limit 5;

2. How many salespeople are from California (“CA”)?

select
sum(1)

from
SP

where st = 'CA';

3. Write a query which returns three columns and twelve rows. The first column should be month and
should be the month that the sales took place, the second column should contain the number of items
sold for the “Twelve Plus” audience and the third should contain the number of items sold for the
not “Twelve Plus” audience. Assume that the sales table contains all information for the year 2011
(and no other year.

select
date_part('month', dt) as mnth
, sum(case when TPlus = 1 then 1 else 0 end) as tplus
, sum(case when TPlus = 0 then 1 else 0 end) as tminus

from
sales

left join
item

using(iid)
group by 1;

4. Write a query which returns 5 columns. The first column is the state, the second column is the
number of items sold to that state, the third is the number of items sold to that state which had a
revenue greater than $1,000, the fourth column should the number of unique customers sold to that
state and the final column should be the number of customers who spent more than $1,000 in a single
transaction.

396

D
RA
FT

select
lhs.st
, count(1) as numitemsold
, sum(case when Rev > 1000 then 1 else 0 end) as numitems1000
, count(distinct CustID) as unique custs
, count(distinct case when Rev > 1000 then custID else null end)

from
SP

left join
Sales

using(SalesID)
group by 1;

5. Write a query which returns IID and the average revenue generated for that item. Exclude items
that have been sold less that 10 times.

select IID, avg(rev) as avgrev
from sales
group by 1
having count(1) > 10;

6. Items which are sold by salepeople in New York (“NY”) have to add a tax of 5%. What is the total
amount of tax that the company needs to add?

select
.05 * sum(Rev) as tax

from
sales

where
salesid in

(select salesID from SP where st = 'NY')

7. Which item (IID) uses the most unique parts (PID)?

select
IID

from
Assembly

group by 1
order by count(1) desc
limit 1;

8. Which items uses the most total parts?

397

D
RA
FT

select
IID

from
Assembly

group by 1
order by sum(NoPart) desc
limit 1;

9. Return a list of the items (IID) that have never been sold:

select item.IID
from

item
left join

sales
using(IID)
where sales.IID is null

10. Return IID and the total cost of the parts used to make a one of them.

select
IID, sum(price * noPart) as cost

from
assembly

left join
parts

using(PID)
group by IID;

11. Of all the salespeople from California (“CA”) or Pennsylvania (“PA”), return the one (Name and
SalesID) with the highest amount of revenue.

select
SP.SalesID, Name

from
SP

left join
Sales

using(SalesID)
where SP.state in ('CA', 'PA')
group by 1,2
order by sum(Rev) desc
limit 1;

12. Of all the salespeople (SalesID) who have sold an item for more than $100.00, return the average
revenue per item sold on all of their sales.

398

D
RA
FT

select
avg(rev) as ar

from
sales

where
salesid in

(select distinct salesid from sales where rev > 100);

13. For each bonus structure (“H” or “L”) return the percentage of revenue generated from salespeople
in that bonus structure. This should return two rows and two columns.

select
bonus,
sr / sum(sr) over() as pct

from
(select

Bonus, sum(rev) as sr
from

SP
left join

sales
using(SalesID)
group by 1) as IQ

14. For each Bonus Structure (“H” or “L”) return the percentage of revenue generated from salespeople
in that bonus structure. This should return one row and two columns (PctRevH and PctRevL). Note
that this is the same data as the previous query, but shaped wide, rather than long.

select
sum(case when Bonus = 'H' then rev else 0 end)/sum(Rev) as PctRevH
, sum(case when Bonus = 'L' then rev else 0 end)/sum(Rev) as PctRevL

from
SP

left join
sales

using(SalesID)

15. Calculate the total profit (total revenue - total cost) for each item (IID).

select
(SR - ct * totalCost) as profit, lhs.IID

from
(select sum(NoPart * Price) as totalCost, IID

from Assembly left join Part using(PID) group by 2) as lhs
left join

(select sum(rev) as SR, IID, count(1) as ct from sales group by 2) as lhs
using(IID)
group by 2;

16. Of all the items (IID) which use more than 5 unique PIDs, which two have the largest number of
sales (in terms of count)?

399

D
RA
FT

select
lhs.IID

from
(select

IID
from

Assembly
group by 1
having count(1) > 5) as lhs

left join
Sales

using(IID)
group by 1
order by count(1) desc
limit 2;

17. An item is called “complex” if the ratio of unique parts (PIDs) to total parts is more than .90%
and is called “simple” if the ratio is below .25%. Write a query which returns one row with three
columns: the first column should be the total revenue generated by complex items, the second should
be the total revenue generated by simple items and the third should be the revenue generated by
items which are neither simple nor complex.

select
sum(case when rat > .9 then amt else 0 end) as TR_complext
, sum(case when rat < .25 then amt else 0 end) as TR_Simple
, sum(case when rat <=.9 and rat >= .25 then amt else 0 end) as TR_neither

from
(select IID, count(1)::float / sum(NoPart) as rat from Assembly
group by 1) as lhs

left join
Sales

using(IID)

18. Return the long version of the query above. This time there will be two columns and three rows. An
item is called “complex” if the ratio of unique parts (PIDs) to total parts is more than .90% and is
called “simple” if the ratio is below .25%. The first column should be equal to “Complex”, “Simple”
or “Neither” and the the second column should be the revenue generated by that type.

select
case

when rat > .9 then 'Complex'
when rat < .25 then 'Simple'
else 'Neither'

end as typ
, sum(amt)

from
(select IID, count(1)::float / sum(NoPart) as rat from Assembly) as lhs

left join
Sales

using(IID)
group by 1;

19. Which salesperson (SalesID) generated the highest profit (total revenue - total cost)?

400

D
RA
FT

select
SalesID

from
(select sum(NoPart * Price) as totalCost, IID

from Assembly left join Part using(PID) group by 2) as lhs
left join

(select sum(rev) as SR, IID, SalesID, count(1) as ct from sales group by 2,3) as lhs
using(IID)
group by 2
order by (SR - ct * totalCost) desc
limit 1;

20. The company believes that there is an assembly cost of roughly $1.00 per part. Note that if an item
requires four of the same part, this means that the assembly cost is $4.00. Factoring in this cost,
what item has the highest total profit?

select
IID

from
(select sum(NoPart * Price) + sum(NoPart)*1.0 as totalCost, IID

from Assembly left join Part using(PID) group by 2) as lhs
left join

(select sum(rev) as SR, IID, count(1) as ct from sales group by 2) as lhs
using(IID)
group by 2
order by (SR - ct * totalCost) desc
limit 1;

21. For each item (IID), return the average number of days between sales (note that subtracting two
dates yields the number of days between those dates).

select
IID, avg(diff) as avgdiff

from
(select

IID
,dt - lag(dt) over(partition by IID order by dt asc) as diff

from
sales) as IQ

group by 1;

22. Using a cross join return a dataset which contains 3 columns: IID, month and the number of days
that that IID was not sold that month. Assume that (a) the Sales table contains all information
from 2011 and (b) that every possible sales date is represented in the Sales table. Note that if an
item is not sold at all during the year it should still be in this result.

401

D
RA
FT

select
IID, date_part('month', dt) as mnth
, sum(case when sales.dt is null then 1 else 0 end) as daysmissing

from
(select distinct IID from item) as lhs

cross join
(select distinct dt from sales) as rhs1

left join
sales

on lhs.IID = sales.IID and rhs1.dt = sales.dt
group by 1,2;

23. Write a query which returns 3 columns: date, the total revenue on that date and the average revenue
from the last three days, but not including the current day. In other words if today is 1/5, then it
should be the average revenue from 1/2, 1/3 and 1/4.

select
dt, sr
, avg(sr) over (order by dt asc rows between 4 preceding and 1 preceding) as MA

from
(select

sum(rev) as SR, dt
from

sales
group by 2) as iq

24. Which salesperson (name) sold the most number of parts. Note that this is not asking for number of
items that each salesperson sold, but the number of parts contained within those items.

select
Name

from
SP

left join
Sales
using(salesid)

left join
Assembly
using(IID)

group by 1
order by sum(NoPart) desc
limit 1;

25. Bonus The salespeople in the table are characters from a movie. Which one?

402

D
RA
FT

6 2018 SQL Final

This exam was given at the masters level in 2018 for a course just covering SQL. Students had two hours
to complete it.

The information below comes from an insurance company’s database, which operates under the following
model: Agents sell insurance to households. A household may purchase multiple types of insurance (e.g.
fire, car, earthquake). If a household makes a claim on a policy, then the insurance company can either
pay the claim or fight it. If the insurance company fights a claim, then there are expenses associated with
it. This database contains only active policies.

• Columns with the same name can be assumed to be the same.

• Unless stated above, all values are not null.

• Agent Table:

– This table contains information regarding the agents in the company.

– AgentID: This the ID of the agent, it is unique to each row. (int)

– St: This is the agent’s state. NULL values mean that the agent is international. (string)

– Name: This is the agent’s name.

– Bonus: This is equal to “H” or “L” for “High” or “Low” bonus structure. (string)

• Household table:

– This table contains information about the households that are insured.

– HHID: The unique ID for the household, it is unique to each row. (int)

– AgentID: This is the ID of the agent who manages the household. (int)

– Name: This is the head of household’s name. (string)

– MultiFam: Are there multiple people in the household (1 = “Yes”, 0 = “No”). (int)

– zip: The zip for the household. (string)

• Policy table:

– This table contains information on each policy. A household may multiple policies.

– PolicyID: The unique ID for each policy. You can assume it is unique to each row. (int)

– HHID: The unique ID for the household. (int)

– PolicyType: The type of insurance policy. (string)

– EndDate: The date the policy expires. (date)

– Cost: The cost charged for the policy. (float)

• Claims Table:

– This table contains information on claims made against insurance policies. A policy may have
multiple claims or no claims against it.

– ClaimID: The ID associated with the claim, it is unique to each row. (int)

– PolicyID: The policy the claim is against. (int)

403

D
RA
FT

– Amt: The amount of money being asked by the policy holder for the claim. (float)

– dt: This is the date that the claim was received. (date)

• Expense Table:

– This table contains information on legal expenses for disputing a claim. A single claim may
have multiple expenses.

– EID: Expense ID, assume it is unique for each row. (int)

– ClaimID: The claim that the expense is against. (int)

– EAmt: The amount of the expense. (float)

– dt: This is the ID of the salesperson. (int)

– type: The type of expense (legal, private investigator, etc.). (float)

404

D
RA
FT

Table D.6: Agent Table, 228 Rows

AgentID ST Name Bonus

1 CA Miles Quaritch H
2 PA Jake Sully L
3 Parker Selfridge L
4 CA Neytiri H

Table D.7: Household Table, 4,525 Rows

HHID AgentID Name Zip MultiFam

1 1 John Smith 11217 1
2 1 James McWright 99924 1
3 37 Elrod Lee 12345 0

Table D.8: Policy Table, 5,587 Rows

PolicyID HHID PolicyType EndDate Cost

1 1 Fire 01-01-2019 1,245.76
2 1 Car 01-01-2019 2,247.05
3 5 Flood 07-08-2020 287.56
4 37 Earthquake 03-01-2019 22,476.18

Table D.9: Claims Table, 1,225 Rows

ClaimID PolicyID Amt dt

1 22 254.85 09-03-2018
2 22 212.87 09-05-2018
3 188 12,285.96 07-07-2017

Table D.10: Expense Table, 2,258 Rows

EID EAmt ClaimID dt type

1 65.73 1 01-03-2011 Legal
2 75.73 12 02-03-2011 Private Invest.
3 265.04 17 01-05-2011 Filing Fees
4 554.36 8 08-27-2011 Court Fees
5 18.18 22 08-11-2011 Legal

405

D
RA
FT

For the following questions write a query that returns the answer and ONLY the answer. All questions
should be answered with a single SQL query, unless stated otherwise. Do not use CTE’s.

1. What are the top five agents (AgentID) in terms of number of Households sold to?

select AgentID
from Household
group by 1
order by sum(1) desc
limit 5;

2. How many Agent’s have sold policy’s to households in zipcode 11217?

select
count(distinct agentID)

from
Household

where zipcode = 11217;

3. Write a query which returns four columns. The first column should be the year (int), the second
should be the month (int) that a policy expires, the third column should be the total costs of all
policies that expire during that month-year and the final column should be the number of “Fire”
policies that expire that month.

select
date_part('year', EndDate) as yr
, date_part('month', EndDate) as mnth
, sum(Cost) as totalCost
, sum(case when PolicyType = 'Fire' then 1else 0 end) as numberFire

from
Policy

group by 1,2;

4. For each household (HHID), return (a) the HHID, (b) the number of policies it has (c) the total costs
associated with those policies.

select
hhid, count(1), sum(Cost)

from
policy

group by 1;

5. Similar to the above question, return the (a) HHID, (b) the number of policies for that household
and (c) the number of claims for that household.

406

D
RA
FT

select
lhs.hhid, count(distinct rhs1.policyID), count(distinct rhs2.claimID)

from
household as lhs

left join
policy as rhs1
using(hhid)

left join
claims as rhs2
using(policyid)

group by 1;

6. International Agents need to pay an additional tax on their policy’s of 7.5% of the cost. For those
policies which expire in 2019, what is the total international tax bill?

select
sum(cost) *.075 as taxpaid

from
agent

left join
household
using(agentID)

left join
policy
using(policyID)

where agent.st is null
and date_part('year', enddate) = 2019;

7. Write a query which returns the most common policy type (e.g. “Fire”) for MultiFam households.
Note that most common is the number of policies, NOT cost.

select
policy.policytype

from
household
using(agentID)

left join
policy
using(policyID)

where multifam = 1
group by 1
order by count(1) desc. limit 1;

8. Write a query which returns two rows and two columns. The first column should be “Bonus” type
(“H” or “L”) and the second should be the number of agents who have that bonus type (number of
rows).

select bonus, count(1)
from agent group by 1;

9. Write a query which returns one rows and two columns, which is the transpose of the previous

407

D
RA
FT

question. The first column should be “HighBonus” and contain the number of agents who have
Bonus type of High and the second column should be the number of agents who have a Bonus type
of Low (“LowBonus”)

select
sum(case when bonus = 'H' then 1 else 0 end) as HighBonus
, sum(case when bonus = 'H' then 1 else 0 end) as LowBonus

from agent;

10. What is the total claim (not policy cost) amount by policy type?

select
policytype
, sum(amt) as claimamt

from
policy

left join
claims
using(policyID)

group by 1

11. The company is interested in learning if policies from “H” bonus agents have more claims than those
of “L” bonus agent. Please write query which returns the total policy costs as well as the total amount
paid for claims, by Agent bonus type. This should return two rows and three columns (bonustype,
policycosts, claimamt).

select
bonus
, sum(policy.cost) as policycost
, sum(rhs2.amt) as claimamt

from
agent

left join
household
using(AgentID)

left join
policy
using(HHID)

left join
(select sum(amt) as amt, policyid from claims group by 2) as rhs2
using(policyID)

group by 1;

12. Write a query which returns the following information: (a) AgentID, (b) The number of policies that
they are in charge of, (c) the total number of claims against those policies and (d) the percentage of
policies that the agent is in charge of that have a claim against it. Specifically, if a policy has two
claims against it, then it should only be counted once in the numerator.

408

D
RA
FT

select
AgentID
, count(distinct policyID) as numPolicies
, count(distinct claimID) as numclaims
, count(distinct claimID)::float / count(distinct policyID) as pct

from
household

left join
policy
using(HHID)

left join
claims
using(PolicyID)

group by 1;

13. Write a query which has three columns: year of policy expiration (as an integer), month of policy
expiration (as an integer) and a running sum of the dollar amount of policies expiring over time.
There should be one row for each year-month combination.

select yr, mon
, sum(cost) over(order by yr asc, mon asc

rows between unbounded preceding and current row)
from
(select

date_trunc('year', enddate) as yr
, date_trunc('month', enddate) as mon
sum(cost) as cost

from
policy

group by 1,2) as iq

14. We define a “house” risk zip code to be one where the total cost of “Fire”, “Flood” and “Earthquake”
is more than twice as large as the cost of “Car” policies within that zip code. What percentage of
zip codes are high risk (return a single number, the percent of zip codes are “house” risk)? You may
assume that there is at least one policy of each policy type within each zip code.

select
avg(case when 2* hr > car then 1 else 0 end) as pct

from
(select

zip
, sum(case when PolicyType in ('Fire', 'Earthquake', 'Flood)

then cost else 0 end) as hr
, sum(case when PolicyType = 'Car'

then cost else 0 end) as car
from

household
left join

policy
using(policyID)
group by 1) as innerq;

409

D
RA
FT

15. Write a query which returns the total expense amount of each “type” of Expense as well as the type
of expense, making sure to sort from the largest total amount to the smallest total amount.

select
type
, sum(Eamt) as totalamt

from
expenses

group by 1
order by 2 desc;

16. Write a query which returns the state with the largest number of “H” bonus agents. This should
return 1 row and 1 column

select
st

from
agent
where bonus = 'H'

group by 1
order by count(1) desc limit 1;

17. Of all the agents (agentID) who have ever sold a policy to zip code to 11217, which one had the
highest average policy cost over all their policies that they sold?

select household.agentID
from

household
left join

policy
using(hhid)
where agentid in

(select distinct agentid from household where zip = 11217)
group by agentID
order by avg(cost) desc limit 1;

18. Which household (HHID) has the most number of policies (assume that this is unique and that there
exists a household with more policies than any other household)

select
HHID

from
policy

group by HHID
order by count(1) desc limit 1;

19. We are interested in the cash flow associated with claims, by policy type. Write a query which returns
the 3 day moving average of the total claims (amt) received per day by policy type as well as the
day-over-day percent change. There should be one row per day-policy type combination and four
columns in the table (dt, policy type, moving average and percent change). To compute the percent

410

D
RA
FT

change, take today’s total amount and divide by yesterday’s. If today is 1/5/2018, then the three
days in the moving average should be 1/3, 1/4 and 1/5. You can assume that every day of interest
is represented in the policy table for all policies and that there are no days without claims for every
policy type.

select
dt, policytype
, avg(amt) over(partition by policytype

order by dt asc rows between 2 preceding and current row)
, amt / lag(amt) over(partition by policytype

order by dt asc)
from
(select

sum(amt) as amt
, dt
, policytype

from
policy

left join
claims
using(PolicyID)
group by 2,3) as IQ

20. What month (just month, e.g. 12 for “December”) is the most common end date for policies (by
number of policies)?

select date_part('month', enddate)
from policy group by 1 order by count(1) desc limit 1;

21. It turns out that California Agents (those with state = “CA”) were lying on costs associated with
“Fire” Policies. In particular, every policy which was more than $500 had an additional $100 of fraud
added to it. Write a query which returns two columns and one row. The first column should be the
number of affected policies and the second should be the total amount (in dollars) of fraud.

select
sum(1) as fclaims, 100 * sum(1) as dollarsfraud

from
(select HHID, policyID, cost from policy

where policytype = 'Fire' and cost > 1000) as lhs
left join

household
using(HHID)

where agentID in (select agentID from agent where st = 'CA') ;

22. What percentage of expenses have a claim amount associated with them larger than $1000? Return
a single number which is this percent.

411

D
RA
FT

select
sum(case when claims.amt > 1000 then 1 else 0 end) / sum(1) as pct

from
expense

left join
claims
using(claimID);

23. Write a query which returns three columns. The first column should be policy type, the second
should be the number of Multifam households which purchased that policy type and the third should
be the number of NON Multifam households (Multifam = 0) that purchased it. There should be one
row per policy type.

select
policytype
, sum(case when multifam = 1 then 1 else 0 end)
, sum(case when multifam = 0 then 1 else 0 end)

from household
left join policy using(HHID)
group by 1;

24. Which policy type has the highest average cost? Return one row and one column.

select policytype
from policy
group by 1
order by avg(cost) desc
limit 1;

25. Agent’s are paid based on the following formula: If they have a “H” type bonus plan, then they
receive $100 for each policy they sell + 10% of the cost of that policy. If an agent has a low type
(“L”) bonus plan, they receive $200 for each policy they sell + 5% of the cost of the policy. Compute
the total wages paid to each agent. This should return two columns: agentID and their wages.

412

D
RA
FT

select
agentID
, case

when bonus = 'H' then 100 * numpolicies + .1 * totalcost
else 200 * numpolicies + .05 * totalcost

from
(select

agentID
, max(bonus) as bonus
, count(1) as numpolicies
, sum(cost) as totalcost

from
agent
left join
household
using(agentID)

left join
policy
using(HHID)

group by 1) as innerQ

26. Bonus: All the agent’s in the agent table are from a movie. What movie?

413

D
RA
FT

7 2019 Exams

In 2019, a joint Pandas/SQL five week course was taught which had four exams. These are all four exams.
Note that each exam contained both Pandas and SQL questions.

Exam #1

The following table contains information about athletes at a college. You can assume each name uniquely
defines a person and that a person only plays a single sport. There are no two rows with the same
name.

• name: The name of the applicant (string)

• wgt: The athlete’s weight (in kg) (float)

• hgt: The athlete’s height (in meters) (float)

• state: The state that the athlete is from (string)

• mdt: The date that the measurement was taken (date type)

• sport: The sport (all lowercase) that the person plays (string)

• sex: Is the athlete male or female (“M” or “F”) (string)

• injury: Injuries (all lowercase) are listed here (if Null that means no injury). There will be only a
SINGLE injury listed (string)

• The name of the table / DataFrame is ath. No need to use a schema or load the DataFrame.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

Figure D.3: Ath Table: 12,435 Rows

name wgt hgt state mdt sport sex injury

Ringly Roberson 94.25 1.75 NY 8-1-2012 basketball M
Crash Bandicoot 88.25 1.62 MS 1-1-2012 rugby M shoulder
alligator reynolds 66.1 1.88 PA 8-5-2012 softball F

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Using SQL, write a query which returns the names (name only) of the top-6 tallest athletes who play
basketball.

SELECT
name

FROM
ath

where sport = 'basketball'
order by hgt desc limit 6;

414

D
RA
FT

2. Using SQL, write a query which returns all basketball players (name only) shorter than 1.65 m from
either New York (‘NY’) or Alabama (‘AL’). Only include those athletes who are not injured.

select name from ath where
state in ('NY', 'AL')
and hgt < 1.65
and sport = 'basketball'
and injury is null;

3. Write an SQL query which returns the number of athletes from each state who are injured. This
should be two columns by fifty rows.

SELECT
state, count(1) as ct

from
ath

where injury is not null
group by 1;

4. Write an SQL query which returns all rows and columns for female athletes.

select * from ath where sex = 'F';

5. We say that a sport is injury prone if 10% or more of the sport has injuries. Write an SQL query
which returns a list of sports which are injury prone.

select sport from ath
group by 1
having sum(case when injury is not null then 1 else 0 end) ::float / sum(1) >= .10;

OR:

select sport from
(select sport

, sum(case when injury is not null then 1 else 0 end)::float / sum(1) as rat
from ath
group by 1) as innerQ
where rat >= .1

6. We calculate the BMI (“Body Mass Index”) of a person by taking their weight and dividing it by
the height squared. Write a query which returns all rows and three columns: BMI, name and sport.

select wgt / hgt / hgt as bmi, name, sport
from ath;

7. Return a table with three columns: name, sport, and BMIFlag. BMIFlag should be equal to “0” if
the BMI is less than or equal to 20, “1” if the BMI is greater than 20 and less than or equal to 30
and “2” otherwise.

415

D
RA
FT

select
name, sport, wgt / hgt / hgt as BMI
, case

when wgt / hgt / hgt <= 20 then 0
when wgt / hgt / hgt <= 30 then 1
else 2 end as bmiflag

from
ath;

8. If a person’s BMI is greater than or equal to 30 they are defined as obese. Write a query which
returns the percentage of athletes of each sport who are obese.

select
sport,
sum(case when wgt / hgt / hgt > 30 then 1 else 0 end)::float / count(1) as pctObese

from
ath

group by 1;

9. Write a query which returns the sport, average height and average weight (by sport) for everyone
whose name begins with the letter “A”. Do not assume that the first letter of the person’s name is
always uppercase (there could be an “ann mitchell” in the table).

select
sport
, avg(hgt) as agh
, avg(wgt) as agw

from ath
where upper(left(name,1)) = 'A'
group by 1;

10. Volleyball and basketball are known to be hard on the knees. Write a query which returns the percent
of athletes who have “knee” injuries who play “volleyball” or “basketball” (combined) vs. the percent
of knee injuries for sports which are NOT “volleyball” or “basketball”. In other words, this should
return two rows (one for volleyball / basketball and one for other) and two columns (one with a label
for the sports included and one for the percent).

select
case

when sport = 'basketball' or sport = 'volleyball' then 'VB'
else 'not VB'

end as sportsType
, sum(case when injury = 'knee' then 1 else 0 end)::float / sum(1) as pctKnee
from ath
group by 1;

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named ath is already loaded. Unless otherwise specified you may return either a Pandas
Series or DataFrame.

416

D
RA
FT

1. Using Pandas, return an object (Series, DataFrame or array) of the names, and names only, of the
top-6 tallest athletes who play basketball.

ath.loc[(ath.sport == 'basketball')].nlargest(6, hgt)['name']

2. Using Pandas, return all basketball players (name only) shorter than 1.65 m from either New York
(‘NY’) or Alabama (‘AL’). Only include those athletes who are not injured.

ath.loc[
(ath.sport=='basketball') & (ath.hgt < 1.65) & ((ath.state == 'AL') | (ath.state == 'NY'))
& (ath.injury.isna() == True), 'name']

3. Using Pandas, return an object which contains the names of sports (this should be without duplicates)
which have a player with an injury to their “shoulder”. You may assume that all the injuries in the
table are lowercase.

ath.loc[(ath.injury=='shoulder')].sports.unique()

4. Female soccer players who have had a knee injury are going to be put on a special training program.
Please return an object which contains their names and only their names sorted by state (A to Z).

ath.loc[(ath.sport == 'soccer') & (ath.injury == 'knee') & (ath.sex == 'F')]
.sort_values('state')['name']

5. We calculate the BMI (“Body Mass Index”) of a person by taking their weight and dividing it by
the height squared. In Pandas, return a DataFrame with three columns: BMI, name and sport for
all rows.

ath = ath.assign(bmi = ath.wgt / ath.hgt / ath.hgt).loc[:, ['name', 'sport', 'bmi']]

6. Return a DataFrame with three columns: name, sport and BMIFlag. BMIFlag should be equal to
“0” if the BMI is less than or equal to 20, “1” if the BMI is greater than 20 and less than or equal
to 30 and “2” otherwise.

ath = ath.assign(bmi=ath.wgt / ath.hgt / ath.hgt).loc[:, ['name', 'sport', 'bmi']]
ath.loc[(ath.bmi >= 30), 'bmiflag'] = 2
ath.loc[(ath.bmi >= 20) & (ath.bmi < 30), 'bmiflag'] = 1
ath.loc[(ath.bmi < 20), 'bmiflag'] = 0

7. There was an error with the weight machine and all weight-ins done in the month of March of 2012
were 10% too high. Please return an updated DataFrame with the information corrected. Note
that this should include all rows and columns from the original dataset with wgt set 10% lower for
miss-measured observations.

ath.loc[(ath.mdt.dt.year == 2012) & (ath.mdt.dt.month == 3), 'wgt']
= .9* ath.loc[(ath.mdt.dt.year == 2012) & (ath.mdt.dt.month == 3), 'wgt']

8. Return a DataFrame which contains all information on anyone from Rhode Island (“RI”) or who has
a “knee” injury. Return this data sorted first by sport (A to Z), then by state (A to Z) and then by
name (Z to A). Finally, upper case all returned names.

417

D
RA
FT

ath = ath.loc[(ath.state == "RI") | (ath.injury == "knee")]
.assign(name=ath.name.str.upper())
.sort_values(['sport', 'state', 'name'], ascending=[True, True, False])

9. Return a DataFrame which contains name, state and a flag which is equal to 1 if they play soccer
and weight less than 70 kg or play basketball and weight less than 80 kg. The flag should be zero
otherwise.

ath = ath.assign(flag = 0)
ath.loc[((ath.sport == "soccer") & (ath.wgt < 70))

| ((ath.sport == "basketball") & (ath.wgt < 80)), 'flag'] =1
ath[['name', 'state', 'flag']]

Exam #2

The following table contains information about customer service interactions at a company. In particular,
this has information about customers coming in and asking questions about their computer laptops.

• serviceid: This is an incrementing integer (int)

• custid: This is the ID for the customer (int)

• pid: This is the ID of the reported problem (e.g. battery problems are when pid = 2) (int)

• servicedt: This is the date that the service took place (date)

• location: This is the city and state of the service center (string)

• result: This is the diagnosis code for the device (e.g. result = 1 means solved) (int)

• followup: This contains information about if there was a follow up to the customer service (string)

• The name of the table / DataFrame is cust. No need to use a schema or load the DataFrame.

• The only column with Null values is “followup”.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

Figure D.4: cust Table: 12,435 Rows

serviceid custid pid servicedt location result followup

1 21 12 1-1-2012 Livermore, CA 1
2 21 23 1-5-2014 Livermore, CA 1
3 26 11 1-15-2018 Livermore, CA 110 Refund
4 53 18 3-3-2011 Yuma, AZ 1

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns all rows and columns for services which occur in March or December of
any year.

418

D
RA
FT

select

*
from

cust
where date_part('month', servicedt) = 3

or date_part('month', servicedt) = 12;

2. All customers with problem 22 (pid = 22) in California (location ends with ‘CA’) had the wrong
result. Please write a query which returns a list of customers (no duplicates, just their IDs) who need
to be notified.

select distinct custid
from cust
where right(location,2) = 'CA'
and pid = 22;

3. Write a query which returns a time series of the number of services which have no followup. This
should be aggregated to the month/year level, so that all no-followup service of the same month/year
are combined. Make sure to return the data sorted from earliest to latest date. In other words, there
should be two columns: one indicating the year / month (as a date) and one with the number of
services without a followup.

select
date_trunc('month', servicedt) as monyear
, sum(1) as ct

from
cust

where followup is null
group by 1
order by 1 asc;

4. We say that a service request is solved if there is no followup and the result is equal to 1. For each
problem type (pid), report the total number of solved service requests.

select
pid
, count(1) as solved

from
cust

where followup is null and result = 1
group by 1;

5. We say that a service request is solved if there is no followup and the result is equal to 1. Generate a
dataset which has one row per location and three columns. The first column is location, the second
is the total number of solved interactions at that location (over all time) and the third is the total
number of all customer service interactions in August of 2014 at that location.

419

D
RA
FT

select
location
, sum(case when result = 1 and followup is null then 1 else 0 end) as tst2
, sum(case when date_trunc('month', servicedt)::date = '08-01-2014'

then 1 else 0 end) as tstaug
from

cust
group by 1;

6. Write a query which returns the locations which have more than 10 different types of problems (unique
pid). For those locations, return two columns: one with the original location and one with just the
state abbreviation. You can assume that all locations are of the form “cityname, state abbreviation”
and that all state abbreviations are TWO characters long.

select
location, right(location, 2) as state

from
cust

group by 1
having count(distinct pid) > 10

NOTE THE ABOVE CAN BE GROUP BY 1 OR GROUP BY 1,2

7. We are trying to figure out how effective each service center is at solving different problems. Create
a dataset with 3 columns: the first should be location, the second should be problem (pid) and the
third should be the percent of problems of that type and at that location which are “solved” (result
= 1 and no followup). Make sure to exclude any problem/location group with less than or equal to
10 rows.

select
pid
, location
, sum(case when result = 1 and followup is null

then 1 else 0 end)::float / sum(1) as pct
from

cust
group by 1,2
having count(1) > 10;

8. Write a query which returns the frequency distribution of different problem types. This should return
two columns. The first, called num, should be the number of times a problem appears in the dataset
and the second, called “val” should be number of times this frequency occurs. For example, let’s say
that problems (pid) 27, 35 and 115 each appear 8 times in the table (and no other problem appears
exactly 8 times in the table), then there should be a row which is (8,3). Note that each problem
(pid) should only be tallied once.

select ct as num, count(1) as val
from

(select count(1) as ct
from cust group by pid) as innerq

group by 1;

420

D
RA
FT

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that a DataFrame named cust is already loaded. Unless otherwise specified you may return either a Pandas
Series or DataFrame.

1. Generate a DataFrame which contains all columns and only those rows which have problem #3 (pid
= 3) and are solved (result = 1 and there is no followup).

cust.loc[(cust.result == 1) & (cust.pid == 3) & (cust.followup.isna())]

2. Generate a dataset which contains (a) location (b) the earliest date that a service occurred for that
location, (c) the latest date that a service occurred at that location, (d) the number of unique
problem’s (pid) that the location experienced and (d) the total number of services that occurred at
that location. Don’t worry about column names, but make sure that location is a column.

(cust
.groupby(['location'])
.agg({'servicedt' : ['max', 'min'], 'pid' : ['nunique', 'sum']})
.reset_index()

)

3. Generate a DataFrame with three columns: location, day of the week (“dow”, as an integer) and
the number of rows with any, non-null followup that were at that location on that day-of-the-week.
Note that it doesn’t matter if this returns columns or indexes for any value.

cust['dow'] = cust.servicedt.dt.dayofweek
cust['flag'] = 0
cust.loc[˜(cust.followup.isna), 'flag'] = 1
cust.groupby(['location', 'dow']).agg({ 'flag' : 'sum'})

4. Generate a dataset which has one row per location and three columns. The first column is location,
the second is the total number of solved (result = 1 and followup is empty) interactions at that
location (over all time) and the third is the total number of customer service interactions in August
of 2014 at that location. Make sure that this is three columns.

cust.assign(succ=0, Aug2014=0)
cust.loc[(cust.result == 1) & (cust.followup.isna()), 'succ'] = 1
cust.loc[(cust.servicedt.dt.month == 8) & (cust.servicedt.dt.year == 2014), 'Aug2014'] = 1
cust.groupby('location').agg({'succ' : ['sum'], 'Aug2014' : ['sum']}).reset_index()

5. We are trying to figure out how effective each service center is at each location at solving different
problems. Create a DataFrame with three columns: the first should be location (“location”), the
second should be problem (“pid”) and the third (“succ”) should be equal to 1 or 0, depending on if
the outcome was solved (result = 1 and no followup) or not. This should have the same number of
rows as the original DataFrame. Name this DataFrame “tst”.

cust['succ'] = 0
cust.loc[(cust.result == 1) & (cust.followup.isna()), 'succ'] = 1
tst = cust.loc[:, ['location', 'pid', 'succ']]

6. Assume that you have the “tst” DataFrame from the problem above. We now want to calculate

421

D
RA
FT

the percent of customer interactions which are solved, aggregated to the problem (pid) and location
level. In other words, using the DataFrame from the previous problem, generate a new DataFrame
consisting of three columns: location, pid and the percent of interactions which were solved. Specif-
ically this is the sum of “succ” divided by the number of rows. Make sure to remove any row which
has less than 10 observations in the original DataFrame (as there is not enough data to conclude
anything from them).

tst = tst.groupby(['location', 'pid']).agg({'succ' : ['sum', 'count']})
tst.columns = ['s1', 'c1']
tst = tst.loc[(tst.c1 > 10)]
tst.assign(pct=tst.s1/tst.c1)[['pct']].reset_index()

Exam #3

The following table contains information about doctors and their patients. At most, each patient has one
doctor.

• Columns in the patients table

– patientid: This is an auto-incrementing integer for the patient (int)

– doctorid: This is the ID for the doctor that they see (int)

– hgt: This the height of the patient in meters (float)

– birthdt: This is the date of birth of the patient (date)

– wgt: This is the weight of the patient in kg (float)

– city: This the city that the person lives in (string)

– state: This is the state that the person lives in (string)

– sex: The sex of the patient (M/F) (string)

• Columns in the doctors table

– doctorid: This is an auto-incrementing integer for the doctor (int)

– speciality: This is the type of doctor (string)

– surgeon: Is the doctor a surgeon (Y/N) (string)

– sex: The sex of the doctor (M/F) (string)

• The names of each table are “patients” and “doctors”. No need to refer to any schema or load a
DataFrame.

• There are some patients who have not yet been assigned doctors, so doctorid could be
Null in the patients table.

• There are some doctors who were just hired who have not been assigned patients yet.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

• Any two columns with the same name can be assumed to match.

422

D
RA
FT

Figure D.5: Patients Table: 12,435 Rows

patientid doctorid hgt birthdt wgt city state sex

1 2 1.7 1-1-1997 58.2 Livermore CA M
2 18 1.65 1-5-1975 56.5 Livermore CA F
3 18 1.8 1-15-1994 67.3 Livermore CA M
4 7 1.93 3-3-1964 66.0 Yuma AZ M

Figure D.6: Doctor Table: 277 Rows

doctorid speciality surgeon sex

1 Oncology Y M
2 ENT N F
3 General N M
4 Pediatric Y F

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns two columns. The first should be the doctorid and the second should
be the number of patients that that doctor sees. This should be sorted from most to least patients
seen. Make sure to not include doctors who have no patients and patients who have no doctors.

select
doctorid, count(1) as ct
patients

where doctorid is not null
group by 1
order by 2 desc;

2. A high-usage doctor is one that sees strictly more than 50 patients. Write a query which returns four
columns. The first should be state, the second and third should be the average height and average
weight of patients from that state and the fourth should be the number of patients from that state.
Note that this should only include patients who have a high-usage doctor. There should be one row
returned per state.

423

D
RA
FT

select
state
, avg(wgt) as aw
, avg(hgt) as ah
, count(1) as ct

from
(select doctorid from patients
group by doctorid
having count(1) > 50) as lhs

left join
patients

using(doctorid)
group by 1 ;

OR

select
state
, avg(wgt) as aw
, avg(hgt) as ah
, count(1) as ct

from
patients

where doctorid in
(select doctorid from patients

group by doctorid
having count(1) > 50)

group by 1 ;

3. Write a query which returns three columns. The first should be the speciality, the second should be
the number of surgeons (surgeon = ‘Y’) within that speciality and the third should be the number
of non-surgeons (surgeon = ‘N’) of that speciality.

select
speciality
, sum(case when surgeon = 'Y' then 1 else 0 end) as numsurg
, sum(case when surgeon = 'N' then 1 else 0 end) as numnonsurg

from
doctor

group by 1;

4. We say that a doctor is the same-sex as their patient if they are the same-sex as the patient (e.g. both
Male or both Female). Write a query which returns two columns. The first should be the patientid
and the second should be a flag which is equal to 1 if the patient and doctor are the same sex, zero
otherwise. If a patient does not yet have a doctor the flag should be set to -1. This should have the
same number of rows as the patients table.

424

D
RA
FT

select
patientid
, case

when lhs.sex = rhs.sex then 1
when rhs.sex is null then -1
else 0

end as flag
from

patients as lhs
left join

doctor as rhs
using(doctorid);

5. Create a dataset with five columns: year, speciality, number of patients who were born that year and
have a doctor with that speciality, the average weight of patients who were born that year and have
a doctor of that speciality and the average height of patients who were born that year and have a
doctor of that speciality. Note that year should be returned as a number, not a date. Only include
those patients who have been assigned doctors.

select
date_part('year', birthdt) as yr
, speciality
, count(1) as numpatients
, avg(hgt) as avghgt
, avg(wgt) as avgwgt

from
patients

inner join
doctor

using(doctorid)
group by 1,2;

6. We calculate the Body Mass Index of a person (BMI) as weight divided by height squared. Generate
a table which has two columns: speciality and the max BMI of patients who see doctors of that
speciality. Be careful to exclude doctors without patients and patients without doctors.

select
speciality
, max(wgt / hgt / hgt) as maxbmi

from
patients

inner join
doctor

using(doctorid)
group by 1;

7. Write a query which returns four columns. The first should be speciality, the second should be sex
(of the doctor), the third should be surgeon (the ‘Y’/‘N’ flag) and the fourth should be the number
of doctors of that type (where type is defined as speciality, sex and surgeon combination). If there is
no doctor of that type then the count should be set to zero.

425

D
RA
FT

select lhs1.sex, lhs2.speciality, lhs3.surgeon, count(rhs.doctorid)
from

(select distinct sex from doctor) as lhs1
cross join

(select distinct speciality from doctor) as lhs2
cross join

(select distinct surgeon from doctor) as lhs3
left join

doctor as rhs
on lhs1.sex = rhs.sex

and lhs2.speciality = rhs.speciality
and lhs3.surgeon = rhs.surgeon

group by 1,2,3

Pandas Section

Please answer the following question, making sure to return only the information required. You can
assume that a DataFrames named patients and doctor are already loaded. Unless otherwise specified you
may return either a Pandas Series or DataFrame.

1. Generate a DataFrame with two columns. The first should be the doctorid and the second should be
the number of patients that the doctor sees. This should be sorted from most to least patients seen.
Make sure to not include doctors who have no patients and that it returns two columns.

(pd.merge(doctor, patients, on='doctorid', how='inner')
.groupby('doctorid')
.agg({'patientid' : 'count'})
.sort_values('patientid', ascending=False)
.reset_index())

This can be done without a merge, but you need to filter out the rows which don't match

2. Return a DataFrame which contains patientid, doctorid, birthdate and the speciality of the that
patient’s doctor. Only include those patients from California “CA” who have been assigned doctors.

lhs = patients.loc[(patients.state == 'CA'), ['patientid', 'doctorid', 'birthdate']]
rhs = doctors.loc[:, ['doctorid' , 'mtype']]
mrg = pd.merge(lhs, rhs, on='doctorid', how='inner')

3. A high-usage doctor is one that sees strictly more than 50 patients. Create a DataFrame which
returns four columns. The first should be state, the second and third should be the average height
and average weight of patients from that state and the fourth should be the number of patients from
that state. Note that this should only include patients who have a high-usage doctor. There should
be one row returned per state.

p1 = patients[['doctorid']].groupby('doctorid').agg({'doctorid' : ['count']}).reset_index()
p1.columns = ['doctorid', 'ct']
p1 = p1.loc[(p1.ct > 50)]

mrg = (pd.merge(p1, patients, on = ['doctorid'], how = 'inner')
.groupby('state')
.agg({'wgt' : ['mean'], 'hgt' : ['mean'], 'doctorid' : ['count']})
.reset_index()
)

426

D
RA
FT

OR

lst = patients[['doctorid']].groupby('doctorid').agg({'doctorid' : ['count']}).reset_index()
lst.columns = ['doctorid', 'ct']
lst = lst.loc[(lst.ct > 50), 'doctorid']

p1 = (patients.loc[(patients.doctorid.isin(lst)), :]
.groupby('state')
.agg({'wgt' : ['mean'], 'hgt' : ['mean'], 'doctorid' : ['count']})
.reset_index()
)

4. We calculate the Body Mass Index of a person (BMI) as weight divided by height squared. Generate
a DataFrame which has two columns: speciality and the max BMI of patients who see doctors of
that speciality. Be careful to exclude doctors without patients and patients without doctors. Make
sure to return two columns

patients['bmi'] = patients.wgt / patients.hgt / patients.hgt

mrg = (pd.merge(patients, doctor, on='doctorid', how = 'inner')
.groupby('speciality')
.agg({'bmi' : ['max']})
.reset_index()
)

5. Create a DataFrame with three columns. The first should be state, the second should be number of
patients from that state (total), the third should be the number of patients from that state which do
NOT have doctors.

mrg = pd.merge(patients, doctor, on ='doctorid', how='left').assign(nodoc=0)
mrg.loc[mrg.doctorid.isna(), 'nodoc'] = 1
mrg = mrg.groupby('state').agg({'doctorid' : ['count'], 'nodoc' : ['sum']}).reset_index()

6. How many patients do not have a doctor assigned?

patients.loc[patients.doctorid.isna(), 'patientid'].count()

Exam #4

The following tables contains information about Uber drivers, their rides and reviews.

• Columns in the drivers table:

– did: This is an auto-incrementing integer ID for the driver (int)

– state: This is the state that the driver lives in (string)

– prom: Is the driver on a promotion? (Y/N) (string)

• Columns in the rides table:

– rid: This is an auto-incrementing integer for the ride (int)

– ridets: This is the date and time that the ride occurred (date)

– did: This is ID for the driver (int)

427

D
RA
FT

– air: This is a flag (Y/N) for if the trip went to the airport (string)

– length: This is the ride length in km (float)

• Columns in the reviews table:

– rid: This is the ride which was reviewed (int)

– review: This is the review (star scale: 1 to 5) (int)

• The names of the tables and DataFrames are drivers, rides and reviews.

• Assume that there are no Null values in any of the tables.

• Overly complex queries or code will be penalized.

• Only use syntax covered in class.

• Do not create any views.

• Any two columns with the same name can be assumed to match.

• Not all rides will have reviews. A ride can have, at most, one review.

• Not all Drivers may have rides. When a driver first signs up they will not have any
rides.

• DO NOT USE CTE (“with”), but you CAN use any analytic / window function.

did state prom

1 CA Y
2 MN N
3 CA N
4 CA Y

rid ridets did air length

1 1-1-2012 10:24 AM 45 N 1.25
2 12-23-2012 12:22 PM 45 N 23.45
3 7-6-2013 4:13 AM 112 Y 11.17
4 5-5-2014 1:23 PM 1125 N .75

rid review

1 5
23 4
35 4
45 1

Figure D.7: driver table (27,777 rows), rides table (454,123 rows) and reviews table (137,145)

SQL Section

Please answer the following questions making sure to return only the information requested.

1. Write a query which returns two columns and a row for each state in the table. The first column
should be the state and the second should be the number of rides completed by drivers from that
state.

select
state
, count(1)

from
drivers

join
rides

using(did)
group by 1;

428

D
RA
FT

2. Write a query which returns two columns and one row per driver. The first column should be the
driver’s ID number (did) and the second should be a Y/N flag if the driver’s first ride was to the
airport or not.

select
distinct did, airflag

from
(select

did
, first_value(air) over(partition by did order by ridets asc) as airflag

from
rides) as innerQ;

Note that you could use an aggregate function in the outer query, but there has to be an
inner query.

3. Write a query which returns the following: state of the driver, total rides completed by drivers from
that state and the average review of drivers from that state. Make sure to sort this from highest
to lowest average review. Exclude any state with strictly less than 1,000 riders served. This should
have one row per state.

select
state
, sum(1) as totalrides
, avg(review) as avgreview

from
drivers

join
rides
using(did)

left join
reviews
using(rid)

group by 1
having count(distinct rid) >= 1000
order by 3 desc;

4. Write a query which returns three columns. The first column should be year (as an integer), the
second column should be total rides from that year and the third should be the running or cumulative
total of all rides, excluding the current year. There should be one row per year.

select
yr
, numrides
, sum(numrides) over(order by yr asc rows between unbounded preceding and 1 preceding) as cumsum

from
(select

date_part('year', ridets) as yr
, sum(1) as numrides

from
rides

group by 1) as iq;

5. Write a query which returns four columns: The first should be the driver id (‘did’), the second should
be the total number of rides, the third should be the number of their rides with a review and the
fourth should be the number of rides with 5-star reviews (review = 5). Only include rides from 2018

429

D
RA
FT

and make sure to sort the drivers from most to least rides with reviews. Exclude drivers without any
rides.

select
did
, count(1) as numrides
, sum(case when review is not null then 1 else 0 end) as num_with_reviews
, sum(case when review = 5 then 1 else 0 end) as five_star_reviews

from
rides

left join
reviews

using(rid)
where date_part('year', ridets) = 2018
group by 1
order by 3 desc;

6. Write a query which returns two rows and two columns. One row contains the phrase “LT10” and
have the average review for rides that were (strictly) less than 10 km and the other row should be
“MT15” and should be the average review for rides which are (strictly) more than 15 km. There
should only be two rows.

select
case

when length < 10 then 'LT10'
when length > 15 then 'MT15'

end as flag
, avg(review)

from
rides

join
reviews

using(rid)
where length < 10 or length > 15
group by 1;

7. Without using an analytic function, return one row and two columns. This should be the transpose
of the data in the previous question. The first column should be the average review for rides of less
than (strictly) 10 km and the second should be the average review for rides of more than (strictly)
15 km. It should only have one row.

430

D
RA
FT

select
avg(case

when length < 10 then review
else null

end) as lt10
, avg(case

when length > 15 then review
else null

end) as mt15
from

rides
join

reviews
using(rid);

Pandas Section

Please answer the following question, making sure to return only the information required. You can assume
that DataFrames named drivers, rides and reviews are already loaded. Unless otherwise specified you may
return either a Pandas Series or DataFrame.

1. Return a DataFrame which has two columns and a row for each state. The first column should be
the state and the second should be the number of rides completed by drivers from that state.

pd.merge(rides, drivers, on='did', how='left')
.groupby('state')
.agg({'rid' : ['count']})

2. We are interested in studying the effect of driver promotion (prom = ‘Y’) on long rides (strictly
greater than 10 km). Return a dataset which contains two rows (one for prom=‘Y’ and one for prom
= ‘N’) and has three columns. The first should be prom, the second should the number of long rides
to the airport (air=‘Y’) the third should be the number of long rides not to the airport (air=‘N’).

mrg = pd.merge(drivers, rides, on='did', how='left')
mrg = mrg.loc[(mrg.loc[:, 'length'] > 10), :]

mrg.loc[: , 'airflag'] = 0
mrg.loc[(mrg.loc[:, 'air']) =='Y' , 'airflag'] = 1

mrg.loc[: , 'Nairflag'] = 0
mrg.loc[mrg.loc[:, 'air']=='N' , 'Nairflag'] = 1

mrg = (mrg
.groupby('prom')
.agg({ 'airflag' : ['sum'], 'Nairflag' : ['sum']})
.reset_index()
)

3. Return a DataFrame with two rows and two columns. One row contain the phrase “LT10” and then
has the average review for rides that were (strictly) less than 10 km and the other row should be

431

D
RA
FT

“MT15” and should be the average review for rides which are (strictly) more than 15 km. There
should only be two rows.

mrg = pd.merge(rides, reviews, on='rid', how='inner')

mrg = (mrg
.loc[(mrg.loc[:, 'length'] < 10) | (mrg.loc[:, 'length'] > 15), :]
)

mrg.loc[:, 'flag'] = 'LT10'
mrg.loc[(mrg.loc[:, 'length'] >15), 'flag'] = 'MT15'

mrg.groupby('flag').agg({'review' : ['mean']}).reset_index()

4. There is a worry that there is a relationship between ride length and the percentage of rides with
reviews. To analyze this we will create a flag called “lflag”, which is equal to 1 if the ride length < 2
km, 2 if the length is >= 2 and < 5 km and 3 if the length >= 5 km. Create a dataset which has the
following columns: lflag, state, number of rides which are of that flag-state combination, the number
of those rides with reviews and the average review from rides of that lflag-state combination.

mrg = pd.merge(drivers, rides, on ='did', how='inner')
mrg = pd.merge(mrg, reviews, on = 'rid', how='left')

mrg.loc[:, 'lflag'] = 1
mrg.loc[(mrg.loc[:, 'length']) >=2) & (mrg.loc[:, 'length'] <5) , 'lflag'] = 2
mrg.loc[(mrg.loc[:, 'length'] >5) , 'lflag'] = 3

mrg.groupby(['state', 'lflag'])
.agg({ 'review' : ['mean', 'count'], 'rid' : ['count'] })
.reset_index()

5. What is the average review for all rides from drivers which have ever had a ride over 60km? This
should return a single number.

lst = rides.loc[(rides.loc[:, 'length'] > 60), 'did'].drop_duplicates()

rds = rides.loc[rides.loc[:, 'did'].isin(lst), :]

pd.merge(rds, reviews, on='rid', how='inner')['review'].mean()

432

D
RA
FT

8 USF’s student table

Use the following tables when answering the questions. The tables below consistent of information from
USF’s undergraduate student system.

1. All columns with the same name (such as CID, SID, etc.) can be assumed to represent the same
thing and join easily.

• SID is an integer and is unique for each student.

• CID is an integer and is unique for each class.

• PID is an integer and is unique to each professor.

2. Student Table: Each row is a unique student currently enrolled at USF.

• BirthDate is a date while ParentCity and ParentState represent the city and state where
their parent’s live while CurrentCity and CurrentState are where the student currently
resides. Both are varchar

3. Classes Table: Maps currently enrolled students to what classes they enrolled in over the course of
their studies.

• EnrollDate is the date they they enrolled in the class.

• Semester is the a varchar(10) which is equal to “Summer”, “Spring” or “Fall.” while Yr is the
year, in integer form.

• Grade is the grade they received. If the student is currently taking the class or if the
student withdraws the course, then grade is null.

4. Catalog Table: Represents the list of classes available at USF for all currently enrolled undergraduates
to take.

• Department, ClassName and Units represent the department, name and number of units
of each class.

5. WithDraw Table: Represents information about currently enrolled students who withdraw from a
class.

• DropDate is the date the student withdrew from the class.

6. Some other assumptions:

• A student cannot repeat a class and a student can only withdraw from a class a single time. In
other words, students get one shot at taking each class.

• All currently enrolled students are in the Class table.

433

D
RA
FT

Figure D.8: Student Table, 4,525 Rows

SID BirthDate ParentCity ParentState CurrentCity CurrentState major

1 01-01-99 Oakland CA San Francisco CA Math

3 01-21-99 Fremont CA San Francisco CA Undeclared

2 11-08-98 Philadelphia PA Burlingame CA Comp. Sci.

Figure D.9: Classes Table, 72,485 Rows

SID CID EnrollDate Semester Yr Grade

12 101 01-11-2015 Spring 2015 3.7
12 109 01-11-2015 Spring 2015
12 800 01-10-2016 Spring 2016 0.0
12 1923 01-10-2016 Spring 2016 4.0
12 111 08-15-2016 Fall 2016
12 546 08-15-2016 Fall 2016
12 999 08-15-2016 Fall 2016

Figure D.10: Catalog Table, 1,288 Rows

CID PID Department ClassName units

800 12 Math Calculus I 4
801 22 Math Calculus I 4
1118 102 English Intro. to Shakespeare 2
45 888 Physics Freshmen Seminar 2

Figure D.11: Withdraw Table, 14,888 Rows

SID CID DropDate

12 109 03-11-2015
1114 888 03-18-2015
765 2345 10-22-2015
9022 891 05-21-2015

1. Draw a picture showing the four tables and how they connect. Make sure to pay attention to which
columns match with which table.

2. How many students are there currently enrolled?

select
count(distinct sid)

from
students;

3. What are the top 10 currently enrolled students (SID only) in terms of number of classes ever enrolled?
E.g. which SID’s enrolled in the most classes.

434

D
RA
FT

select
sid

from
classes

group by sid
order by count(1) desc
limit 10;

4. For each student (SID only), report the number of distinct departments that they have ever taken
classes from.

select
sid, count(distinct department) as numDepts

from
students

left join
catalog

using(cid)
group by 1;

5. What are the top five currently enrolled students (SID only) in terms of number of classes withdrawn?

select
sid

from
withdraw

group by sid
order by count(1) desc
limit 5;

6. Which department has the most popular major?

select
major

from
student

group by 1
order by count(1) desc
limit 1;

7. Which department has the largest number of currently enrolled students withdrawing from their
classes?

435

D
RA
FT

select
department

from
withdraw

left join
catalog

using(cid)
group by department
order by count(1) desc
limit 1;

8. For each student (SID only), report both how many classes they are enrolled in and how many they
have withdrawn from.

select
sid, count(classes.sid) as numEnrolled, count(withdraw.cid) as numWithDrawn

from
classes

left join
withdraw

using(sid, cid)
group by 1;

9. How many currently enrolled students have never withdrawn from a class?

select
count(distinct sid)

from
students

where sid not in
(select distinct sid from withdraw);

We could also use a JOIN to answer this question:

select
students.sid

from
students

left join
withdraw

on students.sid = withdraw.sid
group by 1
having count(withdraw.sid) = 0;

10. Which currently enrolled student (SID only) has the highest percentage of their classes withdrawn?

436

D
RA
FT

select
sid

from
classes

left join
withdraw

using(sid, cid)
group by 1
order by count(withdraw.dropdate)::float / count(classes.sid) desc
limit 1;

11. Which department (department name) had the highest average time between date enrolled and date
withdrawn (in number of days), for those currently enrolled students who withdrew from a class in
that department?

select
department

from
classes left join withdraw using(sid, cid)
left join catalog using(cid)

where dropdate is not null
group by 1
order by avg(dropdate - enrollate) desc
limit 1;

12. Report, for each student the number of classes that they have taken in each department. Make sure
to include rows (with a count of zero) for those departments from which a student has never taken
a class.

select
lhs.sid
, rhs.department
, count(classes.sid) as numclasses

from
(select distinct sid from classes) as lhs

cross join
(select distinct department from catalog) as rhs

left join
classes
on lhs.sid = classes.sid and rhs.sid = classes.sid

group by 1;

13. Of those currently enrolled students who withdraw from at least one class, what is the average number
of classes that they withdrew from?

select avg(ct)
from

(select count(1) as ct
from withdraws group by sid)
as innerQ;

437

D
RA
FT

14. Which professor (PID only) had the average highest percentage of their students withdraw from a
class? This should be an average over classes as professors can teach multiple courses.

select pid, avg(pct) as apct
from (

select pid, cid, sum(coalesce(wd, 0))::float / count(1) as pct
from

(select sid, cid from classes) as lhs
left join

(select sid, cid, 1 as wd from withdraw) as rhs
using(sid, cid)

left join
catalog

using(cid)
) as innerQ

group by 1
order by 2 desc
limit 1;

15. Calculate each currently enrolled student’s GPA, making sure to weigh it by the number of units.

select
SID, sum(units * grade) / sum(units) as GPA

from
classes

left join
catalog

using(cid)
where grade is not null
group by 1;

16. Of all classes with more than 15 currently enrolled students, which ones have an average grade given
of more than 3.5? Make sure to not include withdraws.

select cid
from
classes
where grade is not null
group by 1
having count(1) > 15 and avg(grade) > 3.5;

17. Write a single query which calculates the average GPA of currently enrolled students who (1) with-
draw from more than 10% of their classes and (2) withdraw from less than 10% of their classes.

438

D
RA
FT

select avg(GPA) as avgGPA, more_than10
from
(select

sid
, sum(units * grade) / sum(units) as GPA
, case when wd::float/ccount > .1 then 1 else 0 end as more_than10

from
(select sid, sum(withdraw.dropdate) as wd, sum(1) as ccount

from classes left join withdraw using(sid, cid)
where grade is not null or dropdate is not null
group by 1) as studentInfo

left join classes using(sid)
left join catalog using(cid)
group by 1)

as innerQ
group by more_than10;

439

D
RA
FT

9 FF Sales Example

• In this section we are going to use the following set of hypothetical tables about a company (called
F&F). When writing queries about this data you can assume that all tables are within the same
schema.

• For this company, each transaction (or sale) has a single item and sales person attached to it.

• All columns with the same name can be assumed to match and merge.

• Transaction Table:

– SID, ItemID and TID are all integers, Amount is a float and TransTS is a timestamp1

– TID is unique per transaction and stands for “Transaction ID”

– SID is unique per sales person and stands for “SalesPersonID”

– ItemID is an ID that is unique to an item.

• Refund Table:

– RefundTS is a timestamp

– RefundAmount is a float, it is always less than or equal to the transaction amount

– A transaction can only have a single refund, but not all transactions will have refunds.

Table D.11: Transaction Table, 12,525 Rows

SID TransTS ItemID TID Amount

1 01-01-14 08:10:25 PST 124 1 15000.18

3 01-21-14 18:10:25 PST 888 2 25000.45

2 11-08-14 12:09:25 PST 125 12 1854.65

Table D.12: Refund Table, 385 Rows

TID RefundTS RefundAmount

12 03-14-14 14:12:18 PST 1,854.65

Table D.13: SalesPerson Table, 50 Rows

SID Name MobilePhone State BonusStructure

1 Brian O’Conner 111-222-3333 CA High

2 Dominic Torretto 444-555-6666 CA High

3 Letty 777-888-9999 CA High

4 Lightning McQueen 111-333-5555 AZ Low

5 Tow Mater 222-444-6666 AZ Low

1You can assume that the date functions introduced in class work on this data.

440

D
RA
FTTable D.14: Item Table, 50 Rows

ItemID BaseCost Name

1 4.99 Washer Fluid

2 14.89 Brake Fluid

3 56.78 Brake Pads (Generic)

441

D
RA
FT

1. What are the top five sales people (SID only) in terms of number of sales?

select
count(1) as numsales
, sid

from
transaction

group by 2
order by 1 desc
limit 5;

2. What are the top five sales people (Name) in terms of number of sales?

select
count(1) as numsales
, name

from
transaction

left join
salesperson

using(sid)
group by name
order by 1 desc
limit 5;

3. What are the top 10 sales people (Name) in terms of dollars of sales?

select
name

from
transaction

left join
salesperson

using(sid)
group by 1
order by sum(amount) desc
limit 10;

4. Which mobile phone area code (first three digits) has the highest number of sales?

select
left(mobilePhone, 3) as areaCode

from
transaction

left join
salesperson
using(sid)

group by 1
order by sum(amount) desc
limit 10;

442

D
RA
FT

5. Calculate the total of revenue from each state.

select
state
, sum(amount) as state_amt

from
transaction

left join
salesperson

using(sid)
group by 1

6. Calculate the total revenue from all states.

select sum(amount) as totalsales from transaction;

7. Calculate the percentage of revenue from each state.

select lhs.state, lhs.state_amt / rhs.totalsales
from

(select
state
, sum(amount) as state_amt

from
transaction

left join
salesperson

using(sid)
group by 1) as lhs

cross join
(select sum(amount) as totalsales from transaction) as rhs;

8. What was the total refunded amount for each sales person (SID only)?

select
SID
, sum(refundamount) as refamt

from
transactions

left join
refunds

using(TID)
group by 1;

9. How many sales people had no refunds? When thinking about this problem remember that a sales
person has multiple transactions and each transaction may have a refund. We need to make sure
that there are no refunds for any of the transactions for a sales person.

443

D
RA
FT

select
sid

from
transactions

left join
refunds

using(TID)
group by 1
having count(refunds.refundamount) = 0;

10. Which sales person (name only) had the highest percentage of refunds, based on number of transac-
tions?

select
sid

from
transaction

left join
refund

on transactions.tid = refund.tid
left join

salesperson
on transaction.sid = salesperson.sid
group by 1
order by sum(refundamount)

11. For each salesperson (Name), what percentage of their sales were refunded?

select
name
, sum(refundamount)/sum(amount) as pct_refund

from
transactions

left join
salesperson
using(sid)

left join
refunds
using(tid)

group by 1;

12. What is the average percentage refunded, on those transactions with refunds?

444

D
RA
FT

select
avg(refundamount / amount) as avg_ref_pct

from
transactions

inner join
refunds
using(tid);

13. For each month, report the percentage of sales refunded by both number of refunds and dollars.
Assume that a refund can occur in any month after a sale, but that all refunds are in these tables.

select
date_part('month', transTS) as sales_month
, count(refunds.refundamount)::float

/ count(transactions.amount) as pct_ref
, sum(refunds.refundamount)

/ sum(transactions.amount) as pct_dol_ref
from

transactions
left join

refunds
using(tid)
group by 1;

14. What percentage of sales had (1) returns above 20% (by dollar) and (2) returns above 50% (by dollar)
of their value? Write a single query that returns two values.

select
sum(case when refundamount > .2 * amount then 1 else 0 end)

/ count(1) as pct_above_20
, sum(case when refundamount > .5 * amount then 1 else 0 end)

/ count(1) as pct_above_20
FROM

transactions
left join

refunds
using(tid)

15. Let’s calculate which item (Name) is the most returned, by percent of returns:

445

D
RA
FT

select
item.name

from
transactions

left join
refunds
using(tid)

left join
item
using(itemID)

group by item.name
order by count(refunds.tid)::float / count(transactions.tid) desc
limit 1;

16. Calculate the total amount of BaseCost returned, by item name.

select
item.name
, sum(BaseCost) as amtReturned

from
refunds

left join
transactions
using(tid)

left join
item
using(itemID)

group by item.name;

446

D
RA
FT

10 The Sales Rollup

In this exercise we are going to write a ton of queries about an interesting sales dataset.

The Data

Table D.15: Sales Table, 10,250 Rows

SID CID amount TID sales dt

1 4 13.55 1 1/11/2011
2 12 18.99 2 12/22/2012
2 12 22.01 3 1/12/2013

Table D.16: Expenses Table, 425 Rows

SID CID exp dt amount e type

12 18 5/4/2012 112.24 Dinner
2 44 10/10/2010 112.24 Sport

Table D.17: Transactions Table, 25,254 Rows

TID IID num

1 12 1
1 18 1
2 45 1
3 18 1

Table D.18: Client Table, 152 Rows

CID Name Address City st Zip

1 John Smith 12 Blue Bell street Hayward CA 94552
2 Julia Xue 14 Howard Street Danville VA 24543

Table D.19: SalesPerson Table, 22 Rows

SID Name Address City st Zip StartDt EndDt

1 Rachel Adams 27796 Hanover Hill Hanover NY 14081 12-12-2011 1-3-2014
2 Julia Xue 60 Darwin Court Mobile AL 36602 01-11-2012 7-7-2013

Table D.20: Items Table, 440 Rows

IID ItemName Cost

1 10 lbs. Concrete 12.95
2 20 lbs. Concrete 19.95
3 30 lbs. Concrete 27.95

Questions

Main Questions

1. How many sales people are there from CA?

447

D
RA
FT

Table D.21: Regions Table, 50 Rows

ST Region

CA West
PA East
AL South
VT North

2. In how many different states does this company have clients?

3. What is the average, min and max cost of an item which is for sale?

4. What is the average, min and max cost of items which have concrete in their name?

5. What is the average, min and max cost of items which have concrete in their name vs. those which
do not?

6. Write a query which returns the total sales and number of sales per month.

7. How many sales did each sales person have?

8. How many states are in each region?

9. How many transactions contained item 12?

10. What was the average number of items per transaction? (Think about what to do with the number
of items column)

11. What are the top-5 items sold in units-sold?

A bit harder

1. The total dollars sold and number of items, per salesperson.

2. How many currently employed sales people?

3. Write a query which returns the total number of items that each salesperson sold.

4. What was the average amount expensed per-client and per-salesperson? (Need to do two queries?)

5. How many sales people are in each region?

6. How many sales are from each region? (How would you measure this?)

7. For each client, compute the Revenue - expenses.

8. For each client, compute the profit (revenue - expenses - costs).

9. For each client region, compute the total revenue.

10. For each salesperson region, compute the total revenue.

11. How many clients are in each region?

12. What is our profit per region? (How would you measure this?)

13. How would you calculate profit per transaction?

14. How many different sales people sold each item?

15. How many distinct items has each sales person sold?

448

D
RA
FT

16. For each region (based on client), return the # of salespeople servicing the region, the number of
items sold in that region, the number of transactions that occurred in that region and the total cost
of the items sold in that region.

17. Calculate, for each client region, the number of sales that occurred in the same region as the sales-
person.

18. Because of weird tax rules, we need to collect a tax of 3% of revenue for those transactions where
the client is in the western region. How much tax do we owe per month?

449

D
RA
FT

11 Sales Example I

This assignment contains information up to and including aggregate functions and dates. We will be using
the table sp.mast which contains the following columns:

Column Name Description

SID This is the Salesperson’s ID number.
spname This is the Salesperson’s name.
daysworked The number of total days that the salesperson has worked.
itemssold The total number of items that the salesperson sold.
bonus If the salesperson was under the high- or low- bonus plan.
region What region they worked in.
startdate The date that they started.
salesdt The date that the particular sales occurred.
descr A description of the item sold.
cost The cost of the item (in cents).
prc The price of the item (in cents).

Figure D.12: Information regarding SP.MAST

1. How many total sales are in the database?

select sum(1) from sp.mast;

2. How many sales were completed each month?

select count(1), date_trunc('month', salesdt)
from sp.mast group by 2 order by 2;

3. How many sales were completed by region?

select count(1), region
from sp.mast group by 2 order by 2;

4. Using another tool (such as Excel or Google Docs) prepare a graph which contains the following
information:

(a) Month

(b) Number of sales for that month

(c) Total Revenue from sales that month

(d) Total cost of items from that month

select
count(1) as ct
, date_trunc('month', salesdt)
, sum(prc) / 100.0 as totalRev
, sum(cost) / 100.0 as totalCost

from sp.mast group by 2 order by 2;

450

D
RA
FT

5. Using another tool (such as Excel or Google Docs) prepare a graph which shows, by region and
month, the amount of profit generated. This should have four lines – one for each region.

select
date_trunc('month', salesdt) as mnt
, region
, sum(prc - cost) / 100.0 as prft

from sp.mast
group by 1,2 order by 2,1;

6. Identify the top 7 sales people (name and SID) in terms of total revenue generated.

select spname, sid
from sp.mast
group by 1,2
order by sum(prc) desc limit 7;

7. Plot the monthly revenue (combined) for the top 7 salespeople.

select sum(prc) , date_trunc('month', salesdt) as mnt
from sp.mast
where sid in

(select sid
from sp.mast
group by 1
order by sum(prc) desc limit 7)

group by 2
order by 2;

8. Create a pie chart which breaks down all revenue into one of four categories: (a) the salesperson
worked less than 10 days (b) the salesperson worked between 10 and 20 days (c) the salesperson
worked between 20 and 50 days and (d) the salesperson worked more than 50 days.

select sum(prc) as rev,
case

when daysworked < 10 then 1
when daysworked < 20 then 2
when daysworked < 50 then 3
else 4

end
from

sp.mast
group by 2;

9. Calculate the average profit per region. In particular, calculate the profit per region and then find
the average over the regions.

451

D
RA
FT

select
avg(prft) as prft

from
(select sum(prc - cost) as prft

from sp.mast
group by region) as innerq;

10. We want to understand where we should concentrate our business – high margin items (which are
those where the profit margin (price - cost)/cost >= 23%) or mid margin items (those where the
profit margin is between 23% and 18%) or low-margin items (profit margin less than 18%). Create
a dataset which identifies, for each distinct item, what margin group (high-, mid-, or low-) it is in.

select
iid
,case

when (prc-cost)::float / cost >= .23 then 'high'
when (prc-cost)::float / cost >= .18 then 'mid'
else 'low' end as margin

from
(select distinct prc, cost, iid from sp.mast) as innerQ

11. What was the average number of days that a salesperson worked? In particular, identify the number
of days that each salesperson worked and then calculate the average of it.

select avg(days) as avgdays
from

(select sid, max(daysworked) as days
from sp.mast group by 1) as innerQ;

12. Salespeople are paid based on one of two plans: The “H” bonus plan which means that they are paid
$130 per day, but receive a 10% commission or the “L” bonus plan which they are paid $150 per
day, but receive a 5% commission. Calculate the amount of money that each salesperson made on
the non-commission part.

select sid,
case when max(bonus) = 'H' then 130.0*max(daysworked)
else 150*max(daysworked) end as totalcomp
from sp.mast group by 1;

13. Calculate the total compensation paid to each salesperson, including both the commission and non-
commission portion.

select
sid
, case

when max(bonus) = 'H' then 130.0*max(daysworked) + sum(prc/100.0)*.1
else 150*max(daysworked) + sum(prc/100.0)*.05 end as totalcomp

from sp.mast group by 1;

14. The company is thinking about changing the bonus plan so that the “H” bonus plan would be $100
per day, but 20% commission and the “L” bonus Play would be $175 per day with no commission.

452

D
RA
FT

Calculate the number of salespeople, within each bonus plant, that would be better off under the
new vs. the old plan.

select count(1), bh, case when totalcomp > totalcomp2 then 1 else 0 end
from (
select

sid, max(bonus) as bh
, case

when max(bonus) = 'H' then 130.0*max(daysworked) + sum(prc)/100.0*.1
else 150*max(daysworked) + sum(prc)/100.0*.05 end as totalcomp

, case
when max(bonus) = 'H' then 100.0*max(daysworked) + sum(prc)/100.0*.2
else 175*max(daysworked) end as totalcomp2

from sp.mast

group by 1) as iq group by 2,3;

15. Write a query which returns the following data per region:

(a) The total profit (price - cost)

(b) The average profit per salesperson

(c) The total number of items sold

select
region
, sum(prc - cost) as prft
, sum(prc - cost)::float / count(distinct sid) as pftPerPerson
, count(1) as numSol

from
sp.mast

group by 1;

16. Write a query which returns the following data, this time by margin – high margin items (which are
those where the profit margin (price - cost)/cost >= 23%) or mid margin items (those where the
profit margin is between 23% and 18%) or low-margin items (profit margin less than 18%).

(a) The total profit (price - cost)

(b) The average profit per item

(c) The total number of items sold

453

D
RA
FT

select
case

when (prc-cost)::float / cost >= .23 then 'high'
when (prc-cost)::float / cost >= .18 then 'mid'
else 'low' end as margin

, sum(prc - cost) as prft
, sum(prc - cost)::float / count(1) as pftPeritem
, count(1) as numSol

from
sp.mast

group by 1;

454

D
RA
FT

12 Sales Example II

This assignment is a follow-up to the previous Sales Walk Through. This is the same company and data
as the previous case, but now there are multiple tables, rather than a single combined table. The following
is a data dictionary:

Column Name Description

iid This is the ID number of an item.
descr A description of the item sold.
cost The cost of the item (in cents).
prc The price of the item (in cents).

Figure D.13: Information regarding sp.itemlist, which contains information about each item.

Column Name Description

SID This is the Salesperson’s ID number.
iid This is the ID number of an item.
salesdt The date that the particular sales occurred.

Figure D.14: Information regarding sp.itemmap, which contains a map between salesperson, the date of
the sale and what was sold.

Column Name Description

SID This is the Salesperson’s ID number.
spname This is the Salesperson’s name.
daysworked The number of total days that the salesperson has worked.
bonus If the salesperson was under the high- or low- bonus plan.
region What region they worked in.
startdate The date that they started.

Figure D.15: Information regarding sp.sp, which contains information on each salesperson.

1. How many total sales are in the database?

select sum(1) from sp.itemmap;

2. How many sales were completed each month?

select count(1), date_trunc('month', salesdt)
from sp.itemmap group by 2 order by 2;

3. How many sales were completed by region?

455

D
RA
FT

select count(1), region
from

sp.sp
left join

sp.itemmap
using(SID)
group by 2 order by 2;

4. Using another tool (such as Excel or Google Docs) prepare a graph which contains the following
information:

(a) Month

(b) Number of sales for that month

(c) Total Revenue from sales that month

(d) Total cost of items from that month

select
count(1) as ct
, date_trunc('month', salesdt)
, sum(prc)/100.0 as totalRev
, sum(cost)/100.0 as totalCost

from
sp.itemmap

left join
sp.itemlist

using(iid)
group by 2
order by 2;

5. Using another tool (such as Excel or Google Docs) prepare a graph which shows, by region and
month, the amount of profit generated. This should have four lines – one for each region.

select
date_trunc('month', salesdt) as mnt
, region
, sum(prc - cost)/ 100.0

from
sp.itemmap

join
sp.sp

using(sid)
join

sp.itemlist
using(iid)
group by 1,2
order by 2,1;

OR:

456

D
RA
FT

select
date_trunc('month', salesdt)::date as mnt
,sum (case when region = 'N' then prc-cost else 0 end) as Npft
,sum (case when region = 'S' then prc-cost else 0 end) as Spft
,sum (case when region = 'E' then prc-cost else 0 end) as Epft
,sum (case when region = 'W' then prc-cost else 0 end) as Wpft

from
sp.itemmap

join
sp.sp
using(sid)

join
sp.itemlist
using(iid)

group by 1
order by 1;

6. Identify the top 7 sales people (name and SID) in terms of total revenue generated.

select
spname, sid

from
sp.itemlist

join
sp.itemmap

using(iid)
join

sp.sp
using(sid)
group by 1,2
order by sum(prc) desc limit 7;

7. Plot the monthly revenue (combined) for the top 7 salespeople.

457

D
RA
FT

select sum(prc)/100.0 , date_trunc('month', salesdt) as mnt
from

sp.itemmap
join

sp.itemlist
using(iid)

where sid in
(select

sid
from

sp.itemlist
join

sp.itemmap
using(iid)
join

sp.sp
using(sid)
group by 1
order by sum(prc) desc limit 7)

group by 2
order by 2;

8. Create a pie chart which breaks down all revenue into one of four categories: (a) the salesperson
worked less than 10 days (b) the salesperson worked between 10 and 20 days (c) the salesperson
worked between 20 and 50 days and (d) the salesperson worked more than 50 days.

select sum(prc)::float/100 as rev,
case

when daysworked < 10 then 1
when daysworked < 20 then 2
when daysworked < 50 then 3
else 4

end
from

sp.sp
join

sp.itemmap
using(sid)

join
sp.itemlist
using(iid)

group by 2;

OR

458

D
RA
FT

select
sum(case when daysworked < 10 then prc else 0 end)/100.0 as C1
,sum(case when daysworked >= 10 and daysworked < 20 then prc else 0 end)/100.0 as C2
,sum(case when daysworked >= 20 and daysworked < 50 then prc else 0 end)/100. as C3
,sum(case when daysworked >= 50 then prc else 0 end)/100.0 as C4

from
sp.sp

left join
sp.itemmap
using(sid)

left join
sp.itemlist
using(iid);

9. Calculate the average profit per region.

select
avg(prft)/100.0 as prft

from
(select sum(prc - cost)

from
sp.sp

join
sp.itemmap
using(sid)

join
sp.itemlist
using(iid)

group by region) as innerq;

10. We want to understand where we should concentrate our business – high margin items (which are
those where the profit margin (price - cost)/cost >= 23%) or mid margin items (those where the
profit margin is between 23% and 18%) and low-margin items (profit margin less than 18%). Create
a dataset which identifies, for each distinct item, what margin group (high-, mid-, or low-) it is in.

select
iid
,case

when (prc-cost)::float / cost >= .23 then 'high'
when (prc-cost)::float / cost >= .18 then 'mid'
else 'low' end as margin

from
sp.itemlist;

11. What was the average number of days that a salesperson worked?

select avg(daysworked)
from sp.sp;

12. Salespeople are paid based on one of two plans: The “H” bonus plan which means that they are paid
$130 per day, but receive a 10% commission or the “L” bonus plan which they are paid $150 per

459

D
RA
FT

day, but receive a 5% commission. Calculate the amount of money that each salesperson made on
the non-commission part.

select
sid
, case

when bonus = 'H' then 130.0*daysworked
else 150.0*daysworked

end as totalcomp
from sp.sp;

13. Calculate the total compensation paid to each salesperson, including both the commission and non-
commission portion.

select
sid
, case

when max(bonus) = 'H' then 130 *max(daysworked) + .1*sum(prc/100)
else 150* max(daysworked) + .05*sum(prc/100)

end as totalcomp
from

sp.sp
left join

sp.itemmap
using(sid)

left join
sp.itemlist
using(iid)

group by 1;

14. The company is thinking about changing the bonus plan so that the “H” bonus plan would be $100
per day, but 20% commission and the “L” bonus plan would be $175 per day with no commission.
Calculate the number of salespeople, within each bonus plant, that would be better off under the
new vs. the old plan.

select count(1), bh, case when totalcompT <= totalcompN then 1 else 0 end as BetterOffFlag
from (
select

sid, max(bonus) as bh
, case

when max(bonus) = 'H' then 130 *max(daysworked) + .1*sum(prc/100)
else 150* max(daysworked) + .05*sum(prc/100)

end as totalcompT
, case

when max(bonus) = 'L' then 130 *max(daysworked) + .1*sum(prc/100)
else 150* max(daysworked) + .05*sum(prc/100)

end as totalcompN
from

sp.sp
left join

sp.itemmap
using(sid)

left join
sp.itemlist
using(iid)

group by 1) as iq
group by 2,3;

460

D
RA
FT

15. Write a query which returns the following data per region:

(a) The total profit (price - cost)

(b) The average profit per salesperson

(c) The total number of items sold

select
region
, sum(prc - cost)/100 as prft
, sum(prc - cost)::float / count(distinct sid)/100.0 as pftPerPerson
, count(1) as numSol

from
sp.sp

join
sp.itemmap
using(sid)

join
sp.itemlist
using(iid)

group by 1;

group by 1;

16. Write a query which returns the following data, this time by margin – high margin items (which are
those where the profit margin (price - cost)/cost >= 23%) or mid margin items (those where the
profit margin is between 23% and 18%) and low-margin items (profit margin less than 18%).

(a) The total profit (price - cost)

(b) The average profit per item

(c) The total number of items sold

select
case

when (prc-cost)::float / cost >= .23 then 'high'
when (prc-cost)::float / cost >= .18 then 'mid'
else 'low' end as margin

, sum(prc - cost)::float/100.0 as prft
, sum(prc - cost)::float / count(1) / 100.0 as pftPeritem
, count(1) as numSol

from
sp.itemmap

join
sp.itemlist
using(iid)

group by 1;

461

	Introduction and Errata
	Rows and Columns
	What is a Relational Database
	Selecting Columns
	WHERE: Filtering rows
	Null
	ORDER BY and LIMIT
	Column Numbering
	Where are we: A Note on Scope

	Basic Manipulations
	Types
	Renaming a Column
	Basic Mathematical Manipulations, ABS and LEAST/GREATEST
	Queries without a FROM Clause and Singletons
	String Functions: LEFT, RIGHT, LOWER, UPPER, LENGTH, TRIM and CONCAT
	ROUND and Changing Types (CAST)
	CAST and changing types

	Subqueries, Distinct & Case
	Query Evaluation Order: SELECT and WHERE
	Comparisons: BETWEEN, LIKE and ILIKE
	CASE: Conditional Logic
	The DISTINCT Operator
	Subqueries (IN, ANY, ALL)
	Correlated Subqueries

	Database Internals: Transactions
	REDO / COMBINE NEXT SECTIONS
	Table Creation and Deletion
	Database Operations: CRUD
	Creating Tables, Constraints and Deleting tables
	Altering Tables
	Inserting, Copying, Updating and Deleting
	Transactions and ACID
	Isolation Levels in Relational Databases
	Why do we care (NoSQL)?
	NoSQL
	Transaction Implementations [TBD]

	Aggregations
	Introduction to MTA data set
	GROUP BY clause
	Column numbering syntax
	Aggregates and CASE Statements
	Named Subqueries

	Dates and Types
	Date Types
	Date Functions
	Hard GROUP BY problems

	Averages
	The Trouble with Averages
	HAVING
	COALESCE and NVL

	Joins
	Joins
	UNION and UNION ALL
	Best Practices when Combining Tables
	Intermediate Joins
	Aggregations on-self
	Cross Joins for missing values

	Statistical Analysis in SQL

	Advanced Joins
	The Shape of Data
	Revenue over time & Advanced Joins
	First Value
	Most common value by group
	Cumulative Sum
	Rolling 90 day Calculation
	Cohorted Monthly Revenue

	Analytic Functions & CTE's
	Analytic Functions
	Using Analytic Functions with Transaction Data
	Common Table Expressions (``CTE")
	CTEs with the transaction data

	Database Internals: Performance Evaluation
	Normalization
	Views
	Information Schema
	Performance Considerations
	Index
	Distributed Systems and the CAP Theorem

	Extensions [TBD]
	More Advanced Joins
	OLAP: Cube and Rollup
	Schemas
	Keys
	Data Exploration Strategies
	Query Strategies

	Interview Hints
	Interview Hints
	Example Interview #1
	Example Interview #2
	Example Interview #3
	Example Interview #4

	Introduction
	What is Pandas
	Data structures
	Selecting Columns and Rows
	Column Types Conversion
	Dealing with NaN
	Choosing the largest and smallest values
	Manipulating Data & Method Chaining
	Indexes: Creating and Dropping
	Views and Copies

	More Manipulations and Types
	Sorting DataFrames
	Dealing with Duplicates
	Using Type specific functions
	Dates
	Strings

	CASE style statements and the ``isin" operator
	Regex Pattern Matching

	Aggregations
	Introduction to the MTA dataset
	Simple Aggregations
	GroupBy Objects
	Advanced Index / Multiindex
	If not indexes...
	Indexing with aggregations, a big Gotcha

	Joins
	Helpful Table / Review
	Merging data in Pandas
	Complex Join Conditions
	Stacking Data
	Lags and Leads
	Apply, map and applymap: Advanced Transformations

	Window Functions
	Window Functions in Pandas
	Some gotchas
	Reshaping Data: Transpose, Stack and Unstack
	A Bunch of stuff to clean up
	Combining with the original DataFrame
	Moving the Window
	Pivot / Melt

	Appendix Data Dictionaries
	Introduction
	Iowa Fleet data
	NY MTA Data
	Daily Stock Data: s2010 and s2011
	Annual Fundamental Financial information: fnd
	Soap Transaction Data

	Appendix Connecting SQL to Python or R
	Connecting to any database: ODBC and JDBC
	Connecting only to PostgreSQL

	Appendix Assignments
	HW #0A: PostgreSQL Installation
	HW #0B: Pandas Installation
	HW #0C: MS CAPP Installation instructions
	HW #1A: Basic SQL Querying
	HW #1B: Basic Pandas
	HW #2A: Basic Functions
	HW #3A: Subqueries
	HW #3B: Subqueries in Pandas
	HW #4A: Aggregation
	HW #4B: Aggregation in Pandas
	HW #5A: Aggregate Functions and Dates
	HW #5B: Aggregate Functions and Dates
	HW #6A: SQL Joins (I)
	HW #6B: Pandas Joins (I)
	HW #7A: SQL Joins (II)
	HW #7B: Pandas Joins (II) [TBD]
	HW #8AO: SQL Window Functions: [TBD]
	HW #8A: SQL Window Functions
	HW #8B: Pandas Window Functions
	BART Project
	HW #5AO: Info Schema and Price-Volume Relationship [TBD]

	Appendix Example Exams
	2023 CAPP Databases Final A
	2023 CAPP Databases Final B
	2023 CAPP Databases Midterm A
	2023 CAPP Databases Midterm B
	2017 SQL Final
	2018 SQL Final
	2019 Exams
	USF's student table
	FF Sales Example
	The Sales Rollup
	Sales Example I
	Sales Example II

